首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The motor and cognitive dysfunction associated with hydrocephalus remains a clinical problem in children. We hypothesized that young rats with hydrocephalus should exhibit similar dysfunction and that the dysfunction should be reversible by shunting. Hydrocephalus was induced in 3-week-old rats by injection of kaolin into the cisterna magna. Rats were assessed by T2-weighted images obtained with a 7-T magnetic resonance device and by repeated behavioral testing including ability to traverse a narrow beam and ability to find a hidden platform in a water pool. Some of the rats underwent a shunting procedure 1 or 4 weeks after kaolin injection. Magnetic resonance images were used to measure ventricle size. They clearly demonstrated increased signal in periventricular white matter, which corresponded to increased brain water content. A flow-void phenomenon was observed in the cerebral aqueduct. Ability to traverse the beam did not correlate with the degree of ventriculomegaly. Ability to swim to the hidden platform demonstrated a progressive impairment of learning function which may have been accentuated by motor disability. When rats were shunted after 1 week, the behavioral dysfunction was prevented. Late shunting after 4 weeks was associated with gradual recovery of the behavioral disability which was not complete after 4 weeks. We conclude that early shunting is superior to late shunting with regard to behavioral dysfunction. High-resolution MR imaging shows features in hydrocephalic rats similar to those found in hydrocephalic humans.  相似文献   

2.
Global cerebral ischemia selectively damages neurons, but its contribution to glial cell death is uncertain. Accordingly, adult male rats were sacrificed by perfusion fixation at 1, 2, 3, 5, and 14 days following 10 minutes of global ischemia. This insult produces CA1 hippocampal neuronal death at post-ischemic (PI) day 3, but minor or no damage to neurons in other regions. In situ end labeling (ISEL) and immunohistochemistry identified fragmented DNA of dead or dying glia and distinguished glial subtypes. Rare ISEL-positive oligodendroglia, astrocytes, and microglia were present in control brain. Apoptotic bodies and ISEL-positive glia significantly increased at PI day 1 in cortex and thalamus (p < 0.05), but were similar to controls in other regions and at other PI intervals. Most were oligodendroglia, although ISEL-positive microglia and astrocytes were also observed. These results show that oligodendroglia die rapidly after brief global ischemia and are more sensitive than neurons in certain brain regions. Their selective vulnerability to ischemia may be responsible for the delayed white matter damage following anoxia or CO poisoning or that associated with white matter arteriopathies. Glial apoptosis could contribute to the DNA ladders of apoptotic oligonucleosomes that have been found in post-ischemic brain.  相似文献   

3.
A mouse model of traumatic brain injury was developed using a device that produces controlled cortical impact (CCI), permitting independent manipulation of tissue deformation and impact velocity. The left parietotemporal cortex was subjected to CCI [1 mm tissue deformation and 4.5 m/s tip velocity (mild), or 6.0 m/s (moderate)] or sham surgery. Injured animals showed delayed recovery of pedal withdrawal and righting reflexes compared to sham-operated controls. Significant severity-related deficits in forepaw contraflexion and performance on a rotarod device were evident for up to 7 days. Using a beam walking task to measure fine motor coordination, pronounced deficits were apparent for at least 2 and 4 weeks following mild and moderate CCI, respectively. Cognitive function was evaluated using the water maze. Impairment of place learning, related to injury severity, was observed in mice trained 7-10 days following CCI. Similarly, working memory deficits were evident in a variation of this task when examined 21-23 days postinjury. Mild CCI caused necrosis of subcortical white matter with minimal damage to somatosensory cortex. Moderate CCI produced extensive cortical and subcortical white matter damage. Triple fluorescence labeling with terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL), antineuronal nuclear protein (NeuN), and Hoechst 33258 of parallel sections showed frequent apoptotic neurons. These findings demonstrate sustained and reproducible deficits in sensory/motor function and spatial learning in the CCI-injured mouse correlating with injury severity. Mechanisms of neuronal cell death after trauma as well as strategies for evaluating novel pharmacological treatment strategies may be identified using this model.  相似文献   

4.
BACKGROUND: Data are scarce on the actual rate and mode of outer nuclear layer decay in retinal detachment (RD). We used an experimental rabbit model to assess the presence of apoptosis and rate of photoreceptor death following RD. This model included the creation of localized and stable retinal blebs, while controlling for any decline of retinal elevation over time. METHODS: RD was produced in New Zealand white rabbits by injecting 0.05 ml of 15% sodium hyaluronate (Healon GV) under the neural retina using a microsurgical technique. Animals were killed at 1, 2, 4, 7, 14 and 29 days. Retinal tissue was processed for light and electron microscopy and for in situ end labeling of fragmented DNA using a modification of the TUNEL technique. Photoreceptor cell nuclei were counted in the RD areas of maximum retinal elevation of 28 eyes, and an additional 4 eyes were used for nick end labeling. RESULTS: Positive DNA nick end labeling, ultrastructural features and absence of necrotic cells indicated apoptotic photoreceptor cell death. Also, there was a rapid, almost linear elimination of photoreceptor nuclei over time. At 14 days only half of the number of nuclei were discernible, while approximately one tenth remained after 29 days. There was a statistically significant, but minimal decline in RD height over the 4 weeks of study. CONCLUSION: Following experimental RD in rabbits, apoptotic cell death is associated with an almost linear elimination of photoreceptor cells over time. The use of highly viscous sodium hyaluronate in separating the neural retina from the retinal pigment epithelium allows the RD to maintain a nearly constant height over a period of 4 weeks.  相似文献   

5.
Wistar rats, eight days old, were subjected to permanent bilateral forebrain ischemia, followed by hypoxia for 15 minutes. A cerebral infarct, mainly involving the cerebral neocortex, hippocampus, amygdala, striatum and subcortical white matter was produced. Neurons and glia showing punctate chromatin condensation and karyorrhectic cells were observed 12 hours after hypoxia-ischemia. Their number increased during the first two days and recruitment of cells with degenerating nuclei occurred until day five. In situ labeling of nuclear DNA fragmentation stained many normal-appearing nuclei, as well as punctate chromatin condensations and nuclear fragments in karyorrhectic cells. Delayed neuronal death in the CA1 area of the hippocampus was observed after 20 minutes of transient forebrain ischemia in the adult gerbil. In situ labeling of nuclear DNA fragmentation demonstrated stained punctate chromatin condensation in a few degenerating cells at 48 hours post-ischemia. Substantial labeling of CA1 neurons occurred in the fourth day. Agarose gel electrophoresis of extracted brain DNA from ischemic infant rats and adult gerbils showed a ladder-type pattern which is typical of nuclear DNA fragmentation into oligonucleosomal fragments (internucleosomal cleavage). These findings suggest that endonuclease(s) activation may play a role in cell death induced by different forms of hypoxia-ischemia.  相似文献   

6.
This study explores the effects of infusion of nerve growth factor (NGF) on behavioral outcome and cell death in the septal region using the clinically relevant model of fluid-percussion brain injury in the rat. Animals were subjected to fluid-percussion brain injury and 24 hours later a miniosmotic pump was implanted to infuse NGF (12 animals) or vehicle (12 animals) directly into the region of maximum injury for 2 weeks. Four weeks postinjury the animals were tested for cognitive function using a Morris Water Maze paradigm. Neurological motor function was evaluated over a 4-week postinjury period. The rats receiving NGF infusions had significantly higher memory scores than vehicle-treated animals. Examination of the cholinergic neurons in the medial septal region using choline acetyltransferase immunohistochemistry demonstrated significant cell loss after injury. Infusion of NGF significantly attenuated loss of these cholinergic neurons. A second group of animals was subjected to fluid-percussion brain injury alone (23 rats) or injury followed by NGF infusion (18 rats). These animals were killed between 24 hours and 2 weeks postinjury and the septal region was examined for the presence of apoptotic cells using the terminal deoxynucleotidyl transferase-mediated biotinylated-deoxyuridinetriphosphate nick-end labeling technique. Apoptotic cells were identified as early as 24 hours postinjury; their numbers peaked at 4 and 7 days, and then declined by 14 days. The NGF-treated animals had some apoptotic cells; however, even at 7 days there were significantly fewer of these cells. No significant motor differences were observed between the NGF- and vehicle-treated groups. These data indicate that NGF administration beginning 24 hours after fluid-percussion brain injury has a beneficial effect on cognition and results in sparing of cholinergic septal neurons. These improvements persist after cessation of NGF administration. The beneficial effects of NGF may be related to its ability to attenuate traumatically induced apoptotic cell death.  相似文献   

7.
The method of in situ end-labeling of nuclear DNA fragmentation was used in the study of ten patients (two biopsies, eight autopsies) with sporadic Creutzfeldt-Jakob disease (CJD). All the patients had the typical morphological lesions including neuron loss, spongiform change and astrocytosis. Four of them also showed prion protein (PrP) deposits in the cerebral cortex, and two of them kuru-like plaques in the cerebellum. A few cells with DNA breaks were found in the two biopsy cases; one of them, suffering from a panencephalopathic form of the disease, showed positive nuclei not only in the cerebral cortex but also in the subcortical white matter. Variable numbers of positive nuclei were observed in the gray and white matter in the eight autopsy cases, in which, although the distribution of positive cells roughly correlated with the distribution of neuron loss, no clear relationship was found as regards the distribution and degree of cell labeling and the degree of neuron loss. Furthermore, large numbers of positive cells were concentrated in a particular area, whereas a few cells were seen in a neighboring equally affected area. Positive glial cells in the plexiform layer of the CA1 area of the hippocampus, and in the frontal white matter were frequently encountered. Staining of the cytoplasm in a minority of cells was interpreted as the result of nuclear DNA leakage. None of the stained cells had the typical morphology of apoptosis; most particularly, peripheral chromatin condensation and formation of apoptotic bodies were not seen in any case. PrP deposits did not result in an increase of nuclear DNA breaks either within the area or in adjacent regions. Although positive cells were also observed in autopsy cases of controls which were processed in the same way, positive labeling as a whole was higher in CJD than in age-matched controls. These results show that brain nuclear DNA is vulnerable in CJD, and suggest that increased DNA vulnerability has a role in cell death and neuron loss. Since nuclear shrinkage and positive nuclear staining with the method of in situ end-labeling of nuclear DNA fragmentation are not exclusive to apoptosis, further information is needed to categorize cell death in CJD as apoptosis. Necrosis or other forms of cell death, as well as increased DNA vulnerability to agonal changes of the individuals, and to postmortem delay in the fixation of the tissues, may account for additional positive staining in cases examined at autopsy.  相似文献   

8.
The severity and progression of ventricular enlargement, the occurrence of cerebral edema, and the localization of ischemic metabolic changes were investigated in a rat model of hydrocephalus, using in vivo 1H MR spectroscopic imaging (SI) and diffusion weighted MRI (DW MRI). Hydrocephalic rats were studied 1, 2, 4, and 8 weeks after injection of kaolin into the cisterna magna. Parametric images of the apparent diffusion coefficient (ADC) revealed a varying degree of ventriculomegaly in all rats, with different time courses of ventricular expansion. Extracellular white matter edema was observed during the early stages of hydrocephalus, most extensively in cases of progressive ventriculomegaly. In gray matter regions, ADC values were not changed, compared with controls. In case of fatal hydrocephalus, high lactate levels were observed throughout the whole brain. In all other rats, at all time points after kaolin injection, lactate was detected only in voxels containing cerebrospinal fluid. This suggests accumulation of lactate in the ventricles, and/or an ongoing periventricular production of lactate as a consequence of cerebral ischemia in experimental hydrocephalus.  相似文献   

9.
Dynamic deformation applied to white matter tracts is a common feature of human brain trauma, and may result in diffuse axonal injury (DAI). To produce DAI in an experimental model, we have utilized nonimpact inertial loading to induce brain trauma in miniature swine. This species was chosen due to its large gyrencephalic brain with substantial white matter domains. Twenty anesthetized (2% isoflurane) miniature swine were subjected to pure impulsive centroidal rotation 110 degrees in the coronal plane in 4 to 6 ms; peak accelerations ranged from 0.6 to 1.7 x 10(5) rad/s2. Seven days following injury, the brains were fixed (4% paraformaldehyde). Histopathologic examination was performed on 40 microns sections stained with cresyl violet (Nissl), antibodies targeting neurofilament (axonal damage), GFAP (astrocytes), and pig IgG (protein extravasation). Widespread multifocal axonal injury was observed in combination with gliosis throughout the brain, most commonly in the root of gyri and at the interface of the gray and white matter. Very little vascular disruption was noted in regions of axonal injury. Neuronal damage was primarily found in the CA1 and CA3 subfields of the hippocampus. These results suggest that this model is clinically relevant and useful for evaluating mechanisms of inertial brain trauma.  相似文献   

10.
OBJECT: It is possible to diagnose hydrocephalus prenatally based on the morphological appearance of the fetus on neurodiagnostic images; however, the prognosis of this disease shows wide variation. The authors previously proposed a classification system for the prediction of postnatal outcome based on progression of hydrocephalus and affected brain development, known as the "Perspective Classification of Congenital Hydrocephalus (PCCH)." In this study the authors have used their classification system to analyze long-term follow-up results obtained in each clinicoembryological stage of fetal hydrocephalus. METHODS: Sixty-one fetuses with hydrocephalus were examined to predict postnatal outcome by using this newly developed classification. The authors' recently developed method of using heavily T2-weighted imaging with a superconducting magnet clearly delineated the cerebrospinal fluid (CSF) space and the malformed brain and spinal cord. Imaging was achieved in less than 1 second per slice and required no sedation of the fetus. The technique appears to be simple and good at delineating intrauterine anatomy. Hydrocephalus was diagnosed in two fetuses at PCCH embryological Stage I (8-21 gestational weeks), in 28 fetuses at Stage II (22-31 weeks), and in 31 fetuses at Stage III (32-40 weeks). Among these 61 fetuses, clinicopathological typing showed that 19 had primary hydrocephalus (nine in Stage II and 10 in Stage III), 34 had dysgenetic hydrocephalus (two in Stage I, 16 in Stage II, and 16 in Stage III), and eight had secondary hydrocephalus (three in Stage II and five in Stage III). When the hydrocephalic state developed during PCCH Stage I or II, the prognosis was very poor, and only one of 18 fetuses with dysgenetic hydrocephalus and none of three fetuses with secondary hydrocephalus had an acceptable postnatal outcome. Even within the same category or subtype of fetal hydrocephalus, such as primary hydrocephalus in its simple form, or hydrocephalus with spina bifida aperta (myeloschisis), the postnatal outcomes differed depending on the time of onset of hydrocephalus. When the diagnosis of hydrocephalus was made during PCCH Stage II, the fetuses had a poorer postnatal outcome compared with those at Stage III (p < 0.05). CONCLUSIONS: It is emphasized that postnatal prognosis is not simply a function of the form of the diagnosis but is also dependent on the progression of hydrocephalus and the degree to which that process affects neuronal development. Early decompressive procedures, conventionally performed after but, hopefully, performed before birth, are indicated to obtain the optimal postnatal prognosis of fetuses with hydrocephalus diagnosed at PCCH Stage II.  相似文献   

11.
The spatial distribution of metabolite signal intensities can be measured within entire sections of the brain by proton magnetic resonance spectroscopic imaging (1H-MRSI). A group of six patients (4 unrelated girls and 2 brothers from 5 families) with childhood ataxia with diffuse CNS hypomyelination (CACH) underwent long-echo-time, single-slice 1H-MRSI. Relative to controls, there was a decrease in the signal intensity of N-acetylaspartate, choline, and creatine throughout the white matter in all six patients. We identified lactate signals in white matter in three of them with advanced disease. The degree of white matter involvement was not homogeneous over the entire patient group, but did correlate with clinical presentation. Deep and posterior white matter tended to be more involved. There were no 1H-MRSI abnormalities in the gray matter. 1H-MRSI findings suggest that this syndrome is secondary to a metabolic defect causing hypomyelination, axonal degeneration, and, in the most compromised cases, accumulation of lactate. This study shows that CACH is not limited to girls.  相似文献   

12.
Thromboembolic stroke in rats leads to a well-described pattern of histopathological and behavioral abnormalities. However, limited data are available in animal models concerning the response of the white matter to embolic events. The purpose of this study was to document patterns of white matter abnormalities using beta-amyloid precursor protein (betaAPP) immunocytochemistry as a marker of axonal damage. Twelve male Wistar rats underwent photochemically induced right common carotid artery thrombosis (CCAT) or sham procedures. At 3 days after CCAT, rats were perfusion-fixed and sections immunostained for the visualization of betaAPP or stained with hematoxylin and eosin for routine histopathological analysis. As previously described, CCAT produced small ipsilateral embolic infarcts and ischemic cell change within gray matter structures including the medial cerebral cortex, striatum, hippocampus and thalamus. In areas of frank infarction, numerous reactive profiles were observed within borderzones of the damaged site. However, betaAPP immunocytochemistry also revealed reactive axonal profiles within various white matter tracts including the corpus callosum, external capsule and fimbria of the hippocampus. In many cases, the presence of axonal damage could not be appreciated with routine hematoxylin and eosin staining. These data indicate that CCAT leading to platelet embolization to the brain not only produces embolic infarcts but also produces more subtle white matter abnormalities. Previously undetected white matter damage would be expected to participate in the sensorimotor and cognitive behavioral deficits following embolic stroke.  相似文献   

13.
Evidence that ciliary neurotrophic factor promotes axonal sprouting and regeneration in the periphery raises the possibility that this factor is involved in reactive axonal growth in the brain. In situ hybridization was used in the present study to determine whether ciliary neurotrophic factor mRNA expression is increased in association with axonal sprouting in deafferented adult rat hippocampus. In untreated rats, ciliary neurotrophic factor cRNA labeling density was high in the olfactory nerve, pia mater, and aspects of the ventricular ependyma and was relatively low within areas of white matter (fimbria, internal capsule) and select neuronal fields (hippocampal cell layers, habenula). After an entorhinal cortex lesion, hybridization was markedly increased in fields of anterograde degeneration, including most prominently the ipsilateral dentate gyrus outer molecular layer and hippocampal stratum lacunosum moleculare. Labeling in these fields was increased by 3 days postlesion, was maximal at 5 days, and returned to normal levels by 14 days. Double labeling demonstrated that, in both control and experimental tissue, ciliary neurotrophic factor mRNA was colocalized with glial fibrillary acidic protein immunoreactivity in astroglia, but it was not colocalized with markers for oligodendrocytes or microglia. These results demonstrate that astroglial ciliary neurotrophic factor expression is increased in fields of axonal and terminal degeneration and that increased expression is coincident with 1) increased insulin-like growth factor-1 and basic fibroblast growth factor expression and 2) the onset of reactive axonal growth. The synchronous expression of these glial factors in fields of deafferentation suggests the possibility of additive or synergistic interactions in the coordination of central axonal growth.  相似文献   

14.
The establishment of normal iron levels in the neonatal brain is critical for normal neurological development. Studies have shown that both iron uptake and iron concentration in the brain are relatively high during neonatal development. This histochemical study was undertaken to determine the pattern of iron development at the cellular level in the rat forebrain. Iron-stained cells were observed as early as postnatal day (PND) 3, which was the earliest time point examined. At PND 3, there were four major foci of iron-containing cells: the subventricular zone and three areas within the subcortical white matter. These latter foci are associated with myelinogenic regions. The blood vessels were prominently stained for iron throughout the brain. At PND 7, as in PND 3, the majority of the iron-containing cells were in white matter. However, there were also patches of iron staining located specifically in the layer IV of the somatosensory cortex. These cortical patches were no longer visible by PND 14. At PND 14, numerous iron-stained cells were dispersed throughout white matter regions and the tanycytes aligning the third ventricle were prominently stained. The blood vessel staining was less prominent than at earlier time periods. By PND 28, the adult pattern of iron staining was emerging. Iron-stained cells were aligned in rows in white matter and had an apparent preference for a location near blood vessels. This clustering of iron-positive cells around blood vessels gave the white matter a "patchy" appearance. The pattern of development, cell distribution, and morphological appearance of the iron-stained cells are consistent with that reported for oligodendrocytes. That iron-positive cells in the neonate may be oligodendrocytes is consistent with the reports for iron staining in adult brains. The recent reports that oligodendrocytes are highly susceptible to oxidative damage would be consistent with the high iron levels found in these cells. These results indicate that oligodendrocytes play a major role in the development of iron homeostasis in the brain. The role of iron in oligodendrocytes may be associated with metabolic demands of myelinogenesis, including cholesterol and fatty acid synthesis. However, these cells may be a morphologically similar but functionally distinct subset of oligodendrocytes whose function is to regulate the availability of iron in the brain.  相似文献   

15.
DNA fragmentation was examined in situ in flash-frozen human postmortem midbrain as a marker for programmed cell death. A large series of cases comprising 16 pathologically confirmed idiopathic Parkinson's disease (IPD) cases, 14 control cases without brain pathology, and a group of 6 patients with other parkinsonian movement disorders were examined using TdT-mediated dUTP-biotin 3' end-labeling histology. Labeling of neurons and glia was seen in the substantia nigra of control and IPD cases and in other movement disorder cases. Labeled nuclei were seen in melanized nigral neurons; apoptotic bodies were also found but were more commonly associated with nigral glia. In the control group, labeling of neurons and glia was strongly associated with poor agonal status, assessed by tissue pH, a marker for antemortem hypoxia. The mean tissue pH of the control group with neuronal labeling was 6.28 (SEM .057), which was significantly different from that of the unlabeled group 6.55 (SEM .055). Mean tissue pH for all cases was 6.38. There was no association of nigral neuronal labeling with poor agonal status in the IPD cases, which showed labeling throughout the range of pH values. However, extranigral labeling, seen in the mesencephalon, red nucleus, superior colliculus, rostral pons, and periaqueductal gray matter, in all three subject groups was associated with tissue pH values of less than 6.3. These findings suggest that DNA fragmentation is influenced by antemortem hypoxia and that apoptosis-like changes seen in the postmortem nigra may parallel those seen in experimental ischemia in the animal brain. The likely influence of perimortem factors on these changes indicates that results from postmortem studies of apoptotic cell death in neurodegenerative disease should be treated with caution and underlines the importance of determining postmortem markers for agonal status in human brain.  相似文献   

16.
Cerebro-oculo-facial-skeletal (COFS) syndrome is a rare autosomal recessive disorder with microcephaly, severe mental retardation, and death in childhood. The pathogenesis is unknown. Neuropathological features of 8 children with COFS syndrome are presented. Seven of the children, ranging in age from 36 weeks gestation to 5 years 8 months, are of North American aboriginal background from Manitoba, Canada. The eight child is a 3-year-old Caucasian male. In all children there was severe microencephaly and mild ventriculomegaly. Cerebral myelination appeared to be delayed in one infantile case. Swollen ubiquitinated granular cells appeared in the white matter shortly after birth. Older children displayed cortical neuron loss, patchy or diffuse absence of myelin and gliosis in the white matter, and pericapillary and parenchymal mineralization in the globus pallidus and to a lesser extent the putamen and cerebral cortex. The cerebellum of older children exhibited severe degenerative changes involving the internal granular layer and Purkinje cell layer. The neuropathological changes, previously not well documented, suggest that COFS syndrome is associated with a degenerative process that begins in utero and affects many brain cell types. Similarities to Cockayne syndrome are discussed.  相似文献   

17.
Following spinal cord contusion in the rat, apoptosis has been observed in the white matter for long distances remote from the center of the lesion and is primarily associated with degenerating fiber tracts. We have previously reported that many of the apoptotic cells are oligodendrocytes. Here we show that the oligodendrocyte death is maximal at 8 days postinjury and suggest that loss of oligodendrocytes may result in demyelination of axons that have survived the initial trauma. There are two mechanisms that may account for the observed oligodendrocyte apoptosis. The apoptotic cell death may result from the loss of trophic support after axonal degeneration or it may be the consequence of microglial activation. The hypothesis that oligodendrocyte apoptosis is secondary to microglial activation is supported by our observations of microglia with an activated morphology in the same regions as apoptosis and apparent contact between some of the apoptotic oligodendrocytes and microglial processes. In addition to oligodendrocyte apoptosis, a subpopulation of microglia appears to be susceptible to apoptotic cell death as well, as evidenced by the presence of apoptotic bodies in OX42 immunopositive profiles. Thus, the population of apoptotic cells following spinal cord contusion is comprised of oligodendrocytes and putative phagocytic microglia or macrophages. Given the delayed time course of oligodendrocyte death, the apoptotic death of oligodendrocytes may be amenable to pharmacological intervention with subsequent improvement in functional recovery.  相似文献   

18.
Hydrocephalus     
Hydrocephalus may be an acquired or congenital condition. Clinical signs often reflect the level of brain involvement. In young dogs, the presence of a dome-shaped head and/or persistent fontanel are suggestive of hydrocephalus. Ventriculoperitoneal shunting is often used for definitive treatment of hydrocephalus.  相似文献   

19.
The metabolic changes that occur in the neonatal brain as a result of hydrocephalus, and the response to ventriculoperitoneal shunting, vary with the maturational stage of the brain. In this study, local glucose utilization (LCMRglu) and oxidative metabolic capacity were estimated using 2-deoxyglucose autoradiography and cytochrome oxidase histochemistry, respectively. Hydrocephalus was induced in rabbit pups via intracisternal kaolin injections at 4-6 days of age. Shunting occurred at 19-26 days of age and the animals were sacrificed at ages ranging from 33 to 331 days. In normal animals there was a high glucose demand early in life which showed a decrease at about 60 days of age. In rabbits sacrificed prior to 60 days of age the controls showed the highest LCMRglu with significant decreases in both the hydrocephalic and shunted animals. After 60 days of age the shunted animals had higher LCMRglu than both the hydrocephalic and control subjects. Oxidative metabolic capacity peaked before 50 days of age in normal animals. At the youngest age, both the hydrocephalic and shunted animals showed higher cytochrome oxidase density rates than the control rabbits. In the older group, the hydrocephalic animals remained high while the shunted animals approximated the control densities. Neither the changes seen in the LCMRglu nor the oxidative metabolic capacity were correlated with changes in cell packing density or increased intracranial pressure. These data suggest that when the brain is compromised by hydrocephalus, there is an initial compensatory increase in oxidative metabolic capacity. The development of the glycolytic pathway appears to be retarded by hydrocephalus, but with shunting and the passage of time, the LCMRglu rebounds to levels above that of controls.  相似文献   

20.
Recent findings have focused attention on the role of apoptosis in neurodegenerative diseases, however, the apoptotic process in child-onset brain disorders has been little investigated. Xeroderma pigmentosum (XP) and Cockayne syndrome (CS) are hereditary disorders characterized by impaired DNA repair and neurodegeneration. We investigated apoptotic cell death in the cerebellum of five cases of XP group A (XPA), four cases of CS, and twelve controls, using TdT-mediated DIG-dUTP nick-end labeling (TUNEL) and immunohistochemical staining for bcl-2, bcl-x, p53, bax, BDNF and Trk B. The TUNEL-positive cells were found in the granule cells of the cerebellar cortex of two patients with XPA and two patients with CS, whereas such cells were not detected in the cerebellar cortex in controls. Upregulation of bcl-2 or BDNF was not observed, and bcl-x expression was not altered. Some patients showed nuclear expression of p53 in the granule cells and/or molecular layer, bax-positive glial cells in the cerebellar white matter, and a few Trk B-positive cells in the granular layer. These findings suggest that apoptotic cell death can be involved in the cerebellar degeneration in patients with hereditary defects in DNA repair mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号