首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Increased residual platelet reactivity remains a burden for coronary artery disease (CAD) patients who received a coronary stent and do not respond sufficiently to treatment with acetylsalicylic acid and clopidogrel. We hypothesized that serotonin antagonism reduces high on-treatment platelet reactivity. Whole blood impedance aggregometry was performed with arachidonic acid (AA, 0.5 mM) and adenosine diphosphate (ADP, 6.5 μM) in addition to different concentrations of serotonin (1-100 μM) in whole blood from 42 CAD patients after coronary stent placement and 10 healthy subjects. Serotonin increased aggregation dose-dependently in CAD patients who responded to clopidogrel treatment: After activation with ADP, aggregation increased from 33.7 ± 1.3% to 40.9 ± 2.0% in the presence of 50 μM serotonin (p<0.05) and to 48.2 ± 2.0% with 100 μM serotonin (p<0.001). The platelet serotonin receptor antagonist ketanserin decreased ADP-induced aggregation significantly in clopidogrel low-responders (from 59.9 ± 3.1% to 37.4 ± 3.5, p<0.01), but not in clopidogrel responders. These results were confirmed with light transmission aggregometry in platelet-rich plasma in a subset of patients. Serotonin hence increased residual platelet reactivity in patients who respond to clopidogrel after coronary stent placement. In clopidogrel low-responders, serotonin receptor antagonism improved platelet inhibition, almost reaching responder levels. This may justify further investigation of triple antiplatelet therapy with anti-serotonergic agents.  相似文献   

2.
Data on the agreement between aggregometry and platelet activation by flow cytometry regarding the measurement of on-treatment platelet reactivity to arachidonic acid (AA) and adenosine diphosphate (ADP) are scarce. We therefore sought to compare three platelet aggregation tests with flow cytometry for the assessment of the response to antiplatelet therapy. Platelet aggregation in response to AA and ADP was determined by light transmission aggregometry (LTA), the VerifyNow assays, and multiple electrode aggregometry (MEA) in 316 patients receiving aspirin and clopidogrel therapy after angioplasty with stent implantation. AA- and ADP-induced P-selectin expression and activated glycoprotein (GP) IIb/IIIa were determined by flow cytometry. LTA, the VerifyNow P2Y12 assay and MEA in response to ADP correlated significantly (all p<0.001), and the best correlation was observed between LTA and the VerifyNow P2Y12 assay (r = 0.63). ADP-induced platelet reactivity by all aggregation tests correlated significantly with ADP-induced P-selectin expression and activated GPIIb/IIIa (all p<0.001). The best correlation was seen between the VerifyNow P2Y12 assay and activated GPIIb/IIIa (r = 0.68). The platelet surface expressions of P-selectin and activated GPIIb/IIIa in response to ADP were significantly higher in patients with high on-treatment residual platelet reactivity (HRPR) to ADP by all test systems (all p<0.001). A rather poor correlation was observed between AA-induced platelet reactivity by LTA and the VerifyNow aspirin assay (r = 0.15, p = 0.007), while both methods did not correlate with MEA. AA-induced platelet reactivity by all aggregation tests correlated significantly, but rather poorly with AA-induced P-selectin expression (all p<0.05), while only AA-induced platelet reactivity by LTA correlated significantly with AA-induced activated GPIIb/IIIa (r = 0.21, p<0.001). The platelet surface expression of P-selectin in response to AA was significantly higher in patients with HRPR by LTA AA and MEA AA (both p<0.02). In contrast, P-selectin expression in response to AA was similar in patients without and with HRPR by the VerifyNow aspirin assay (p = 0.5), and platelet surface activated GPIIb/IIIa in response to AA did not differ significantly between patients without and with HRPR to AA by all test systems (all p>0.1). In conclusion, ADP-induced platelet reactivity by aggregometry translates partly into flow cytometry. In contrast, AA-induced platelet reactivity correlates poorly between different platelet aggregation tests, and between aggregometry and flow cytometry. Overall, both approaches capture different aspects of platelet function and are therefore not interchangeable in the assessment of agonists´-induced platelet reactivity. Clinical outcome data are needed to determine which test systems and settings are associated with different in vivo consequences.  相似文献   

3.

Background

Clinical studies suggest that 10-50% of patients are resistant to clopidogrel therapy. ADP induced platelet aggregation, a widely used test to monitor clopidogrel therapy, is affected by aspirin and is not specific for the P2Y12 receptor inhibited by clopidogrel.

Objectives

To develop a P2Y12-specific platelet aggregation test and to compare it with other methods used for monitoring clopidogrel therapy.

Patients/Methods

Study population included 111 patients with the history of ischemic stroke being on clopidogrel monotherapy and 140 controls. The effect of clopidogrel was tested by a newly developed ADP(PGE1) aggregation test in which prostaglandin E1 treated platelets are used. Results of conventional ADP induced platelet aggregation, VerifyNow P2Y12 assay and ADP(PGE1) aggregation were compared to those obtained by flow cytometric analysis of vasodilator stimulated phosphoprotein (VASP) phosphorylation. Reference intervals for all assays were determined according to the guidelines of Clinical Laboratory Standards Institute.

Results

The P2Y12-specificity of ADP(PGE1) test was proven by comparing it with ADP aggregation in the presence of P2Y1 antagonist, adenosine 3’, 5’-diphosphate. The method was not influenced by aspirin treatment. Approximately 50% of patients were clopidogrel resistant by conventional ADP aggregation and VerifyNow tests. The ADP(PGE1) method and the VASP phosphorylation assay identified 25.9% and 11.7% of patients as non-responders, respectively. ADP(PGE1) aggregation showed good correlation with VASP phosphorylation and had high diagnostic efficiency.

Conclusion

The new ADP(PGE1) method is a reliable test for monitoring P2Y12 receptor inhibition by platelet aggregation. As a subset of patients are non-responders, monitoring clopidogrel therapy by adequate methods is essential.  相似文献   

4.
The effects of content of a fibrinogen receptor, glycoprotein (GP) IIb–IIIa (αIIb/β3-integrin), GP IIIa genetic polymorphism (substitution Leu33Pro), and fibrinogen concentration in blood plasma on platelet aggregation activity have been investigated in a group of healthy volunteers. In 35 examined donors the GP IIb–IIIa content on platelet surface varied from 40 to 71 × 103 per platelet. Repeated measurements revealed that the GP IIb–IIIa content coefficient of variation was 9.5%, and deviations from mean levels did not exceed 20%. The level and the rate of platelet aggregation induced by ADP (1.25–20 μM) correlated with GP IIb–IIIa number (r from 0.315 to 0.591) and were higher in the group of donors with high in comparison with low GP IIb–IIIa content (>60 and (40–50) × 10?3 per platelet, respectively). Aspirin, the inhibitor of thromboxane A2 synthesis, partially suppressed ADP-induced platelet aggregation. The level of residual aggregation in the presence of aspirin also correlated with GP IIb–IIIa content and increased in subjects with high receptor content. Parameters of ADP-induced aggregation did not differ in donors with genotypes GP IIIa Pro33(?) (Leu33Leu33, n = 20) and Pro33(+) (Leu33Pro33, n = 13, and Pro33Pro33, n = 2) genotype. GP IIb–IIIa content was also not affected by GP IIIa polymorphism. No significant correlations were found between the level and rate of platelet aggregation and fibrinogen concentration in blood plasma. The data obtained indicate that the effects of variations of GP IIb–IIIa content on platelet aggregation are higher than GP IIIa Leu33Pro polymorphism and variations of fibrinogen concentration. High GP IIb–IIIa content is associated with increased platelet aggregation activity and decreased efficacy of aggregation inhibition by aspirin.  相似文献   

5.
目的:比较替格瑞洛与氯吡格雷对急性冠脉综合征(ACS)患者经皮冠脉动脉介入术(PCI)后血小板的抑制效果。方法:选择2014年3月至8月在我院经替格瑞洛联合阿司匹林治疗的ACS患者85例(替格瑞洛组),按性别、年龄2:1匹配原则随机抽取同一时间服用氯吡格雷联合阿司匹林治疗患者170例(氯吡格雷组)为研究对象,两组患者均行PCI治疗,并于服用抗血小板药物负荷剂量2天(PCI术后)进行血栓弹力图(TEG)检测,观察和比较两组患者经ADP途径及经AA途径的血小板抑制率。结果:氯吡格雷组和替格瑞洛组经ADP途径的血小板抑制率分别为(66.60±25.57)%、(82.10±18.87)%,两组比较差异有统计学意义(P0.05)。氯吡格雷组ADP抑制率50%患者占总人数的29.4%,替格瑞洛组ADP抑制率50%的患者占总人数的10.6%,两组差异有统计学意义(P0.05),氯吡格雷组ADP抑制率75%者占总人数的41.8%;而替格瑞洛组ADP抑制率75%的患者占总人数的69.4%,两组抑制率差异也存在统计学意义(P0.05)。氯吡格雷组和替格瑞洛组经AA途径的血小板抑制率分别为(88.70±23.89)%、(90.32±18.09)%,两组比较差异无统计学意义(P0.05)。结论:替格瑞洛对ACS患者PCI术后血小板的抑制作用优于氯吡格雷。  相似文献   

6.
《Life sciences》1997,61(25):PL383-PL389
Cilostazol(6-[4-(1-cyclohexyl-1H-tetrazol-5-yl)-butoxy]-3,4-dihydro-2(1H)-quinolinone) selectively inhibits cGMP-inhibited phosphodiesterase(PDE3) and is a potent inhibitor of platelet aggregation induced by various agonists. Effect of cilostazol on shear stress-induced human platelet aggregation(SIPA) was examined in vitro and ex vivo. Cilostazol inhibited SIPA dose-dependently in vitro. The IC50value of cilostazol for inhibition of SIPA was 15 ± 2.6 μM(m ± SE, n = 5), which was very similar to that(12.5 ± 2.1 μM) for inhibition of ADP-induced platelet aggregation. Cilostazol potentiates the inhibition of SIPA by PGE1, and enhances its ability to increase cAMP concentrations. A single oral adminstration of 100 mg cilostazol to healthy volunteers produced a significant inhibition of SIPA. This study demonstrates that cilostazol is an effective inhibitor of SIPA, which may be important for the prevention and the treatment of arterial occlusive diseases.  相似文献   

7.
IntroductionThe paper describes an alternative method for quantification of in vivo ADP-induced thromboembolism. The aim of the studies was to develop a method of quantification which would not require either extravasation or labelling of platelets. Our proposed approach is based on the monitoring of changes of blood flow with the use of laser Doppler flowmetry.ResultsThe injection of ADP resulted in a dose-dependent reduction of the blood flow in the mesentery. These responses were fully attributable to blood platelet aggregation, as shown by the lack of the effect in platelet-depleted mice, and significantly reduced responses in mice pretreated with cangrelor and eptifibatide. No platelet aggregate formation in mesenteric vessels was revealed by intravital microscopy, while ex vivo imaging showed accumulation of fluorescent labelled platelets in the lung.ConclusionsInjection of ADP to the venous system results in the formation of platelet aggregates predominantly in the lung. This results in reversible blood flow cessation in peripheral blood vessels. The measurement of this blood flow cessation in the mesentery allows indirect measurement of ADP-induced pulmonary thromboembolism. We suggest that this approach can be useful for in vivo screening for antiplatelet drug candidates.  相似文献   

8.
Clopidogrel is an antiplatelet prodrug that is recommended to reduce the risk of recurrent thrombosis in coronary artery disease (CAD) patients. Paraoxonase 1 (PON1) is suggested to be a rate-limiting enzyme in the conversion of 2-oxo-clopidogrel to active thiol metabolite with inconsistent results. Here, we sought to determine the associations of CYP2C19 and PON1 gene polymorphisms with clopidogrel response and their role in ADP-induced platelet aggregation. Clopidogrel response and platelet aggregation were determined using Multiplate aggregometer in 211 patients with established CAD who received 75 mg clopidogrel and 75–325 mg aspirin daily for at least 14 days. Polymorphisms in CYP2C19 and PON1 were genotyped and tested for association with clopidogrel resistance. Linkage disequilibrium (LD) and their epistatic interaction effects on ADP-induced platelet aggregation were analysed. The prevalence of clopidogrel resistance in this population was approximately 33.2% (n = 70). The frequencies of CYP2C19*2 and *3 were significantly higher in non-responder than those in responders. After adjusting for established risk factors, CYP2C19*2 and *3 alleles independently increased the risk of clopidogrel resistance with adjusted ORs 2.94 (95%CI, 1.65–5.26; p<0.001) and 11.26 (95%CI, 2.47–51.41; p = 0.002, respectively). Patients with *2 or *3 allele and combined with smoking, diabetes and increased platelet count had markedly increased risk of clopidogrel resistance. No association was observed between PON1 Q192R and clopidogrel resistance (adjusted OR = 1.13, 95%CI, 0.70–1.82; p = 0.622). Significantly higher platelet aggregation values were found in CYP2C19*2 and *3 patients when compared with *1/*1 allele carriers (p = 1.98×10−6). For PON1 Q192R genotypes, aggregation values were similar across all genotype groups (p = 0.359). There was no evidence of gene-gene interaction or LD between CYP2C19 and PON1 polymorphisms on ADP-induced platelet aggregation. Our findings indicated that only CYP2C19*2 and *3 alleles had an influence on clopidogrel resistance. The risk of clopidogrel resistance increased further with smoking, diabetes, and increased platelet count.  相似文献   

9.
Platelet aggregation in platelet rich plasma (PRP) and whole blood was simultaneously studied in acute experiments on cats in hypocapnic conditions. ADP-induced aggregation increase was determined in PRP and whole blood. Contradictory results were obtained during platelet aggregation induced by collagen and arachidonic acid: increased aggregation in PRP and decreased aggregation in whole blood. The data obtained suggest that ADP is a risk factor for the onset of intravascular thrombosis.  相似文献   

10.

Objective

This study aimed to assess the association of clinical factors with P2Y12-dependent platelet inhibition as monitored by the ratio of ADP- to TRAP-induced platelet aggregation and conventional ADP-induced aggregation, respectively.

Background

Controversial findings to identify and overcome high platelet reactivity (HPR) after coronary stent-implantation and to improve clinical outcome by tailored anti-platelet therapy exist. Monitoring anti-platelet therapy ex vivo underlies several confounding parameters causing that ex vivo platelet aggregation might not reflect in vivo platelet inhibition.

Methods

In a single centre observational study, multiple electrode aggregometry was performed in whole blood of patients after recent coronary stent-implantation. Relative ADP-induced aggregation (r-ADP-agg) was defined as the ratio of ADP- to TRAP- induced aggregation reflecting the individual degree of P2Y12-mediated platelet reactivity.

Results

Platelet aggregation was assessed in 359 patients. Means (± SD) of TRAP-, ADP-induced aggregation and r-ADP-agg were 794 ± 239 AU*min, 297 ± 153 AU*min and 37 ± 14%, respectively. While ADP- and TRAP-induced platelet aggregation correlated significantly with platelet count (ADP: r = 0.302; p<0.001; TRAP: r = 0.509 p<0.001), r-ADP-agg values did not (r = -0.003; p = 0.960). These findings were unaltered in multivariate analyses adjusting for a range of factors potentially influencing platelet aggregation. The presence of an acute coronary syndrome and body weight were found to correlate with both ADP-induced platelet aggregation and r-ADP-agg.

Conclusion

The ratio of ADP- to TRAP-induced platelet aggregation quantifies P2Y12-dependent platelet inhibition independently of the platelet count in contrast to conventional ADP-induced aggregation. Furthermore, r-ADP-agg was associated with the presence of an acute coronary syndrome and body weight as well as ADP-induced aggregation. Thus, the r-ADP-agg is a more valid reflecting platelet aggregation and potentially prognosis after coronary stent-implantation in P2Y12-mediated HPR than conventional ADP-induced platelet aggregation.  相似文献   

11.
Adenosine diphosphate (ADP) plays a pivotal role in platelet activation. Platelet hyperactivity is associated with vascular disease and also has a key role in haemostasis and thrombosis. ADP activates platelets through three purinoceptor subtypes, the Gq-coupled P2Y1 receptor, Gi-coupled P2Y12 receptor and P2X1 ligand-gated cation channel. Platelet ADP purinergic receptors are therefore suitable targets for antiplatelet drugs. Thienopyridines such as clopidogrel and ticlopidine, as well as other ADP receptor antagonists like prasugrel, ticagrelor, cangrelor and elinogrel have demonstrated clinical benefits via the inhibition of the selective purinergic ADP receptor, P2Y12. However, they still have limitations in their mode of action and efficacy, like increased risk of bleeding. Thus, the ongoing pursuit to develop newer and more effective antiplatelet agents continues. There is a growing interest in the purinergic antiplatelet properties exhibited by plant extracts. This article considers the following: pomolic acid isolated from Licania pittieri, brazilin isolated from the heartwood of Caesalpinia sappan L, phylligenin isolated from the twigs of Muraltia vulpina, bark oil of Gonystylus velutinus, seed and bark extracts from Aesculus hippocastanum L. and red wine phenolics and catechins isolated from green tea. Moreover, the method used to investigate platelet purinergic receptors should be considered, since using a more sensitive, high-resolution platelet sizer can sometimes detect platelet variations when the light transmission method was not able to do so. The exact mechanisms by which these plant extracts work need further investigation. They all however inhibit ADP-induced activation in human platelets. This could explain, at least in part, the protective effect of plant extracts as antiplatelet agents.  相似文献   

12.
The aggregation of human platelets by adrenaline and adenosine di-phosphate (ADP) and its inhibition by β-blockers was studied by measuring the light transmission of plateletrich plasma (PRP) and suspensions of washed platelets exposed to these agents. Inhibition of aggregation of PRP and washed platelets was dose related in the two β-blockers tested: propranolol and pindolol. The potent β-blockers pindolol was less inhibitory than propranolol when adrenaline and ADP were used to induce platelet aggregation. The aggregation of platelets by adrenaline has two phases. With low doses of the blockers only the second phase was inhibited whereas higher doses blocked both phases. Preincubation of human platelets (PRP and washed platelets) with both blockers per se resulted in release of 14C-labelled serotonin. Propranolol released more serotonin than pindolol. There was no concomitant release of lactic dehydrogenase. It is concluded that the effects of propranolol and pindolol on platelets do not correlate with the β-blocking activity of these agents. Rather, the more lypophilic agent, propranolol, is more active both in inhibition of aggregation and in releasing platelet serotonin. It is suggested that these actions of the drugs are related to their non-specific membrane effects.  相似文献   

13.
Platelet aggregation is important for maintaining normal hemostasis. However, aberrant platelet aggegation plays a major role in acute coronary artery diseases, myocardial infarction, unstable angina, and stroke. ADP is one of the earliest and most important platelet agonists. ADP induces platelet aggregation, shape change, secretion, influx and intracellular mobilization of Ca2+, and inhibition of the adenylyl cyclase stimulated by prostaglandins. Binding of ADP to purinergic receptor(s) is required for elicitation of the ADP-induced platelet responses. But the platelet ADP receptor(s) has not been purified, largely due to the unavailability of the reagents that can be used to selectively label the platelet ADP receptor. The ADP receptor responsible for the ADP-induced platelet aggregation and inhibition of stimulated adenylyl cyclase activity has not been cloned due to difficulties in screening responsive clones generated from a cDNA library. Since the purified ADP-receptor protein is not available, antibodies that can be used as alternative tools to purify the ADP receptor or screen the clones expressing the receptor could not be made. In addition, the problem may be compounded by the low copy number and the susceptibility of the receptor to proteolysis. Therefore, signal transduction mechanisms underlying biochemical transformations in ADP-induced platelet responses remain less well defined and/less well understood. In the past decade efforts have been made to identify a platelet ADP receptor(s) by photoaffinity as well as affinity labeling by the ADP-affinity analogs. More recently efforts have been directed to clone the platelet ADP receptors. These investigations, however, have not produced definite results. The purpose of this review is to examine the results obtained by the photoaffinity- and affinity-labeling investigations and cloning experiments to identify a platelet ADP receptor(s).  相似文献   

14.
The phorbol ester 12-0-tetradecanoyl-phorbol-13-acetate, a potent tumor-promoting agent, caused irreversible platelet aggregation when more than 0.02 µM was stirred with human citrated or heparinized platelet-rich plasma (PRP). With washed platelets, 1 nM was effective. The alcohol phorbol, which has little tumor-promoting activity, failed to cause platelet aggregation. With all but low concentrations of phorbol ester, aggregation was succeeded by a rapid phase. The latter was prevented or reduced by enzymes which destroy ADP and by aspirin, was associated with a change in platelet shape, and was presumably due to released ADP. At higher concentrations, only a rapid phase was seen, and these inhibitors were not effective. Low concentrations did not aggregate platelets in PRP containing sufficient EDTA or EGTA to chelate ionized calcium or in PRP from thrombasthenic patients; higher concentrations caused slight aggregation. Both the primary, non-ADP-dependent aggregation and the rapid ADP-dependent aggregation were markedly inhibited by substances which increase cyclic AMP, metabolic inhibitors, and the sulfhydryl inhibitor N-ethylmaleimide. Phorbol ester reduced platelet cyclic AMP only when it had been previously elevated by prostaglandin E1. 1 µM did not release β-glucuronidase, lactic dehydrogenase, or inflammatory material from platelets in 4–5 min despite marked aggregation, but liberated all three in 30 min. The possibility is discussed that low phorbol ester concentrations cause primary aggregation by a direct action on platelet actomyosin.  相似文献   

15.
Utilizing a turbidometric technique and human platelet-rich plasma (PRP) at 37°C, aspirin, 2-propionyloxybenzoic acid, 2,3-diacetoxybenzoic acid, sodium salicylate and 4-aminosalicylic acid, at suitable final concentrations and without prior incubation in PRP, prevented adenosine diphosphate (ADP)-induced second phase platelet aggregation and inhibited collagen-induced aggregation. The minimum concentrations of the latter four compounds which inhibited second-phase ADP aggregation were respectively, 15, 43, 60 and 100 times the minimum inhibitory concentration of aspirin. Without prior incubation, 2,6-diacetoxybenzoic acid and 3-propionyloxybenzoic acid potentiated the second phase of ADP aggregation while 3-acetoxybenzoic acid, 4-acetoxybenzoic acid and 2,4-diacetoxybenzoic acid had no effects.Aspirin, 2,3-diacetoxybenzoic acid, 2,6-diacetoxybenzoic acid and 2-propionyloxybenzoic acid, incubated in PRP at 37°C for 5 and 10 min, inhibited collagen-induced platelet aggregation in a concentration dependent manner. Aspirin was most potent, followed by 2-propionyloxybenzoic acid, 2,3-diacetoxybenzoic acid and 2,6-diacetoxybenzoic acid. Inhibition increased with the time of incubation in all cases. The results indicate that structural specificity (the presence of an acyl group in the 2 position of the benzene ring) is important for the aggregation inhibiting activity of aspirin, but do not support the contention that such inhibition is dependent upon the availability of an acetyl radical.  相似文献   

16.
The antiaggregant effect of two reactive oxidants—N,N-dichlorotaurine (a biogenic chloramine) and sodium hypochlorite—on the initial ADP-induced aggregation of rabbit blood platelets was studied. Platelet aggregation in reconstituted platelet-rich plasma was measured nephelometrically; an increase in the intensity of small-angle light scattering served as an index of aggregation. Addition of chloramine at relatively small concentrations (no greater than 1 mM available chlorine) directly to the reconstituted platelet-rich plasma suppressed the initial aggregation (formation of small aggregates) several times more strongly than preincubation of native plasma with chloramine. This suggests that N,N-dichlorotaurine realizes its antiaggregant effect on the platelet-rich plasma by directly interacting with cells. The effects of the inhibition of platelet aggregation in two variants of addition of high concentrations of N,N-dichlorotaurine did not differ significantly. In this case, a large amount of residual unreacted chloramine remained in the plasma, which caused the suppression of platelet aggregation during subsequent reconstitution of the platelet-rich plasma. Similar data were obtained in studying the antiaggregant effect of hypochlorite. N,N-Dichlorotaurine and hypochlorite at concentrations of 0.2–0.3 and 0.15 mM, respectively, strongly inhibited the initial aggregation of isolated platelets (approximately 2·108 cells/ml) preliminarily activated for 1.5 min by addition of 0.1–0.5 μM ADP. However, the antiaggregants had a more profound suppressive effect on the aggregation of unstimulated platelets. The antiaggregant effects of N,N-dichlorotaurine and hypochlorite probably stem from the oxidative modification of the sulfur-containing groups in platelet plasma membrane.  相似文献   

17.
The effects on platelet aggregation of α,β-methylene-adenosine-5′-diphosphate (Ado-PCP) have been investigated. Using human citrated platelet-rich plasma it has been shown that: (i) at concentrations of 10?3 M or higher Ado-PCP is able to induce platelet aggregation; (ii) the rate of Ado-PCP-induced aggregation increases on raising the pH of platelet-rich plasma above the pKa for the secondary phosphonyl dissociation of Ado-PCP; (iii) at concentrations from 1 · 10?4 to 5 · 10?4 M Ado-PCP does not cause platelet aggregation itself, but it inhibits ADP-induced aggregation. This inhibition is also observed in washed platelet suspensions. The data suggest that Ado-PCP acts at the same site on the platelet membrane as does ADP and that ADP to AMP transformation is not a prerequisite for the process of aggregation. The observed effect of pH on the rate of Ado-PCP induced aggregation suggests that the ionization state of a nucleotide terminal acid group is important in the process of aggregation.  相似文献   

18.
目的:在急性冠脉综合征( acute coronary syndromes, ACS )的治疗中,抗血小板治疗及调脂治疗是最基础的治疗方案。近来 有学者提出,氯吡格雷和他汀类药物都经过细胞色素CYP 3A4 途径代谢,二者因存在竞争性抑制,有可能降低氯吡格雷抗血小板 的活性。本试验将针对阿托伐他汀及瑞舒伐他汀进行研究。方法:选择急性冠脉综合症的患者42 例,所有患者均接受氯吡格雷治 疗(负荷剂量300 mg,维持剂量75 mg/d)。随机分配为A、B 两组,A 组(n=20)服用阿托伐他汀治疗(20 mg/d),B 组(n=22 服用瑞 舒伐他汀治疗(10 mg/d)。分别于氯吡格雷服用前、服药治疗后3 天、服药治疗后7 天后采静脉血送检,测定ADP(10 滋mol/L)诱导 的血小板聚集率。结果:阿托伐他汀组(A 组)及瑞舒伐他汀组(B 组)相比,服用氯吡格雷前ADP 诱导的血小板聚集率基线值无 统计学差异。服用氯吡格雷3 日及7 日后,ADP诱导的血小板聚集率明显降低,(3.85± 2.58)vs(3.09± 2.27),(0.65± 0.88)vs(1.05± 0.95),P>0.05,无明显统计学差异。结论:氯吡格雷的确可以降低血小板的活性。同时,短期之内氯吡格雷的抗血小板活性未受到 他汀类的影响,包括经过CPY3A4途径的他汀,如阿托伐他汀。  相似文献   

19.
A low molecular weight anti-platelet peptide (6.9 kDa) has been purified from Naja kaouthia venom and was named KT-6.9. MALDI-TOF/TOF mass spectrometry analysis revealed the homology of KT-6.9 peptide sequence with many three finger toxin family members. KT-6.9 inhibited human platelet aggregation process in a dose dependent manner. It has inhibited ADP, thrombin and arachidonic acid induced platelet aggregation process in dose dependent manner, but did not inhibit collagen and ristocetin induced platelet aggregation. Strong inhibition (70%) of the ADP induced platelet aggregation by KT-6.9 suggests competition with ADP for its receptors on platelet surface. Anti-platelet activity of KT-6.9 was found to be 25 times stronger than that of anti-platelet drug clopidogrel. Binding of KT-6.9 to platelet surface was confirmed by surface plasma resonance analysis using BIAcore X100. Binding was also observed by a modified sandwich ELISA method using anti-KT-6.9 antibodies. KT-6.9 is probably the first 3FTx from Indian monocled cobra venom reported as a platelet aggregation inhibitor.  相似文献   

20.
Platelets play a major role in the hemostatic process following vascular injury. Chemical modification of cysteine and/or lysine residues in platelet proteins has been shown to cause loss of platelet aggregation induced by diverse agonists; however, these investigations have not addressed the identity of the specific proteins affected. o-Phthalaldehyde (OPTH) is a unique chemical modification reagent that forms and permits the identification of fluorescent isoindole derivatives with proteins by covalently and simultaneously modifying closely spaced cysteine and lysine residues. We found that OPTH inhibited platelet aggregation induced by ADP, collagen, and U46619 (an analog of prostaglandin H2), but had minimal effect on platelet aggregation induced by thrombin, plasmin, chymotrypsin, A23187 (a calcium ionophore), PMA (phorbol 12-myristate 13-acetate), and PMA + A23187. Since platelet aggregation induced by ADP, collagen, and U46619 has been shown to involve binding of endogenous or exogenous ADP to the platelet receptor, our further studies focused on platelet aggregation induced by ADP. OPTH inhibited ADP-induced shape change and aggregation in a concentration-dependent manner. The second-order rate constant for the inhibition of ADP-induced platelet shape change (Ksc = 1.0 X 10(3) M-1 s-1) was lower than that for aggregation (Kagg = 5.4 X 10(3) M-1 s-1). Fluorescence excitation and emission spectra of OPTH-platelet adduct exhibited maxima at 346 and 437 nm, respectively, consistent with the formation of an isoindole derivative(s). The nonpenetrating thiol-specific reagent, p-chloromercuribenzenesulfonate (pCMBS) (0.8 mM), is known to block the inhibition of stimulated adenylate cyclase induced by ADP but not the ADP-induced platelet shape change. The inhibition of ADP-induced platelet shape change (Ksc = 1.5 X 10(3) M-1 s-1) by OPTH was not affected by pCMBS. OPTH, at concentrations (15-50 microM) that inhibited ADP-induced platelet aggregation and shape change did not raise the intracellular levels of adenosine cyclic 3',5'-monophosphate (cAMP) in platelets nor did it impair the ability of iloprost (a stable analog of prostaglandin I2) to raise the platelet cAMP level. Thus, OPTH under these conditions did not interact with platelet adenylate cyclase. 5'-p-fluorosulfonylbenzoyladenosine (FSBA) has been previously shown to inhibit ADP-induced platelet shape change and aggregation by covalently modifying aggregin (Mr = 100 kDa), a putative ADP receptor on platelet surface.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号