首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
北黄海东部次盆地是揭示华北克拉通东缘裂谷元古宇地质特征的关键区域.本文通过对关键钻井的地层发育、岩性组合等研究,结合锆石U-Pb年龄测定,分析北黄海东部次盆地元古宇沉积相和古地理环境,解析其年代学及构造属性等信息,为建立华北克拉通东缘元古宇地层框架提供依据.研究表明,北黄海东部次盆地在太古宇结晶基底之上覆盖着厚层元古宇...  相似文献   

2.
中国吉林东部与朝鲜半岛北部地区对比研究,无疑对揭示朝鲜半岛的地质属性、中朝板块北缘东延及演化有着重要的贡献。针对中国吉林东部延边地区和朝鲜咸北地区的晚古生代地层进行化石组合、沉积特征、基底性质以及岩浆序列等方面的对比研究认为:朝鲜二叠纪鸡笼山腕足动物群与中国北方二叠纪哲斯腕足动物群有明显差异,与吉林地区范家屯组,尤其是延边地区庙岭组有较强的可对比性;中国吉林—延吉褶皱带和朝鲜咸北地块均以元古宇为基底,没有太古宙岩石出露;在晚古生代期间,中国吉林东部—延边地区和朝鲜咸北地区沉积环境、岩浆活动相似;朝鲜咸北地块和狼林地块的边界断裂——输城川断裂带应与华北地块和吉黑造山带之间缝合线的东端—古洞河断裂相连接,吉黑造山带东部地块和朝鲜咸北地块在晚古生代时期应处于同一个大地构造单元。  相似文献   

3.
大民屯凹陷元古宇储集层特征及控制因素   总被引:3,自引:0,他引:3  
大民屯凹陷元古宇为主要的油气产层,主要分布于凹陷的西部和北部,呈北东走向、由西南向北东呈阶梯状分布的格局,目前已建成了静安堡北、平安堡、安福屯油田。综合研究认为,中上元古界长城系的大红峪组和高于庄组储集层主要为碳酸盐岩和石英岩类,并将两组地层分7个沉积旋回18个小层。总结了不同岩性、不同小层的储集层特征,认为储集空间主要有裂缝、孔隙和洞3类,并以高角度裂缝为主。白云岩多为裂缝型储层;石英砂岩以裂缝为主,晶孔、晶洞、晶缝为辅型储层。结合测井资料,对含油气储层进行了识别和综合评价。对影响储集性能的因素进行了分析,认为受岩性、断裂、古风化、岩溶等条件综合控制,储集空间复杂,非均质性较强。  相似文献   

4.
中上扬子地区中三叠世雷口坡期岩相古地理研究   总被引:2,自引:0,他引:2       下载免费PDF全文
在详细研究单剖面的基础上,采用单因素分析、多因素综合作图法,编制了中上扬子地区中三叠世雷口坡期的定量岩相古地理图。通过研究认为,雷口坡期以海相沉积为主。由于海退,研究区整体处于浅水沉积区,不发育盆地和斜坡。西部康滇古陆趋于稳定,东南部华夏古陆上升,使中上扬子呈现东高西低的格局:东部为碎屑岩台地,西部为碳酸盐岩台地。根据研究区沉积背景和该期岩相古地理平面上的展布特征,总结出了中三叠世雷口坡期古地理演化过程及沉积模式。  相似文献   

5.
吉林省元古宇老岭群的同位素地质年代学研究   总被引:1,自引:0,他引:1  
吉林省东部地处中朝准地台北部边缘地带,区内古老变质岩地层广泛分布。自下而上分为太古宇的鞍山群和元古宇的集安群、老岭群。该区同位素地质年代学研究程度较低。过去仅有一些零散的钾氩法表面年龄值,显然难以据此正确区分这些地层的沉积时限和变质作用期次。从1981年开始,我们在吉林省地质局和吉林省冶金局各有关地质队、所的大力协助下,采用多种测年手段综合对比的方法,在本区开展了比较系统的地  相似文献   

6.
红旗沟金矿床主要产于元古宇色洛河群地层和花岗岩-绿岩带中,矿化类型主要为石英脉型-蚀变岩型,矿体受北西向构造控制,矿床成因类型属沉积-变质(再造)金矿床。区域地球化学场趋势显示该区为金矿集中区,大多数土壤地球化学测量结果具有直接指导地表工程布置和有可能发现矿体及矿化体的作用。  相似文献   

7.
中上扬子地块周缘巨型成矿带是多旋回多阶段构造演化背景下成矿作用的产物。主要的成矿系统包括沉积-热水沉积成矿系统类、后生盆地流体成矿系统类、岩浆热液成矿系统类三大类。南华纪沉积-热水沉积锰成矿系统、震旦纪沉积-热水沉积铅锌成矿系统、震旦纪—寒武纪沉积-热水沉积银钒多金属成矿系统、二叠纪沉积-热水沉积锰成矿系统主要发育在古大陆边缘且形成于大地构造挤压向拉张的转换期,大型、超大型矿床定位受大陆边缘构造网络系统的制约,成矿的有利环境是拉张断裂控制的裂陷槽,同生断裂系统和深部含矿流体的持续补给是关键的控矿要素。印支—燕山早期后生盆地流体Pb-Zn成矿系统是本区主要的成矿系统且发育在盆山结合带,大型、超大型矿床定位主要受断裂、层位与岩性联合控制。燕山期岩浆热液型Pb-Zn多金属成矿系统受侵入接触构造体系控制,Pb-Zn矿体主要发育在外带;燕山期岩浆热液型Au多金属成矿系统主要发育在盆山结合带,大型、超大型矿床定位受断裂、褶皱构造和隐伏花岗岩的联合控制。本文初步构建了中上扬子地块周缘主要金属矿床成矿谱系。  相似文献   

8.
中上扬子石炭系某些宏观地质信息分析   总被引:2,自引:1,他引:1  
吴祥和 《贵州地质》1999,16(4):294-300
本语文以某些大胆设想、结合当代地学科学前沿研究,分析了发育于早石炭世的玄武质火山岩和热液活动时空分布特征和已有的古地磁资料相印证,论述地壳热膨胀与沉积基底地的关系;通过沉积物厚度获取的沉积速率时分布,探讨了沉积基底形变程度和性质,认为全球海平面变化、地壳热膨胀引起地壳微型扩张中上扬子在石炭纪纬度的迁移等是控制沉积古地理的主要因素,并以此对中上扬子石灰纪进行沉积古地理宏观演化分析。  相似文献   

9.
吉林省铁矿资源贫乏,目前的矿石储量不能满足钢铁业的可持续发展.在成矿地质背景分析的基础上,对区域成矿规律、典型矿床特征及航磁异常、重力异常分析研究,认为吉林省具备铁矿成矿的地质条件,只要科学部署、加大勘查力度,实现铁矿找矿突破是完全可能的.找矿方向应以寻找沉积变质型铁矿为主,兼顾夕卡岩型铁矿及其他新类型,如岩浆型、火山型等.应该加强在吉南地台区、元古宇塔东群出露区、沿深大断裂分布的基性杂岩体及航磁、重力异常叠加区、玄武岩覆盖区及中生代沉积盆地结晶基底的找矿工作.  相似文献   

10.
王河锦  周钊  王玲  苑蕾 《岩石学报》2014,30(10):3013-3020
运用伊利石结晶度、K云母晶格常数b0、应变值τ、颗粒大小分布与矿物组合分析等低温变质指示数据对湘北杨家坪剖面中晚元古宇和下古生界的近变质作用和成岩作用进行了研究。Kisch国际标样用于校正伊利石结晶度的测定。中晚元古宇伊利石结晶度Kübler指数范围为:0.21~0.24°Δ2θ,而下古生界为0.28~0.67°Δ2θ。表明近变质作用影响了中晚元古宇和部分下古生界。按照Kisch国际标样的成岩/变质界限(0.21~0.38°Δ2θ,CuKα),将剖面划分为北部近变质带和中南部成岩带。由绿泥石化学成分地质温度计估计近变质峰期温度约为260℃。K云母晶格常数b0值变化范围0.9000~0.9045nm,平均为0.9017nm,表明近变质作用处于中压-中低压力范围。近变质带伊利石(主要是中晚元古宇)的多型为2M1型,而成岩带伊利石(主要是下古生界)的多型为2M1+1M混合类型。平均对数粒度与对数方差之积(GLR)称为对数总成熟效应具有不同的两组分布特征即近变质作用区(GLR1.88)与成岩作用区(GLR1.88),这是一个新的发现。后变质作用的构造应力不仅可产生断层,而且可引起矿物的应变,从而导致衍射峰的宽化,使得近变质带伊利石结晶度值次生变大到成岩值范畴。与剖面南部地区(长沙-澧陵-浏阳,黄土店-仙溪,沅古坪)比较,杨家坪剖面中晚元古宇和下古生界经历了中压-中低压近变质作用和成岩作用的影响。这一结果与多数前人认为的"元古宇板溪群处于绿片岩相或亚绿片岩相或低绿片岩相而震旦到下古生界为沉积盖层"的观点不同。  相似文献   

11.
This paper summarizes the latest advances in research on the terrane tectonics of China.The terranes of China distributed around various plates may be divided into four terrane belts of different ages and sizes.i.e.,the East China,Northwest China,Southwest China and Qilling-Dabie terrane belts.Among them,the East China belt may be subdivided into three composite terrane groups;each terrane proup is composed of several terranes that were formed roughly at the same time and have distince geologic histories.The accretion of China‘s terranes involver three types;the collision type,the flake-thrusting type,and the docking type.The results of the lates study in the five widening fields and some advances in the methods of research on the terrane tectonics in China are presented in the present paper.  相似文献   

12.
大别山前寒武纪变质地体基本组成   总被引:5,自引:0,他引:5  
桑隆康  游振东 《地质论评》1994,40(3):265-273
本文以新城-圻春断裂为界将大别山前寒武纪变质地体划分为华北陆块南缘和场子陆块北缘两个次级变质地体,两个次级地体不仅在地球物理,构造变形方面明显不同,而且在物质成分上有显著差异,它们有各自独立的变质地层系统,遭受了不同类型的变质作用,有完全不同的岩浆活动图象,上述差异均可指示华北,扬子两古陆碰掸对接时扬子陆块北缘向北俯冲至华北陆块南缘之下,这可能包括两次合作用,从元古代开始至中生代最终结束的长期复杂  相似文献   

13.
East and Southeast Asia is a complex assembly of allochthonous continental terranes, island arcs, accretionary complexes and small ocean basins. The boundaries between continental terranes are marked by major fault zones or by sutures recognized by the presence of ophiolites, mélanges and accretionary complexes. Stratigraphical, sedimentological, paleobiogeographical and paleomagnetic data suggest that all of the East and Southeast Asian continental terranes were derived directly or indirectly from the Iran-Himalaya-Australia margin of Gondwanaland. The evolution of the terranes is one of rifting from Gondwanaland, northwards drift and amalgamation/accretion to form present day East Asia. Three continental silvers were rifted from the northeast margin of Gondwanaland in the Silurian-Early Devonian (North China, South China, Indochina/East Malaya, Qamdo-Simao and Tarim terranes), Early-Middle Permian (Sibumasu, Lhasa and Qiangtang terranes) and Late Jurassic (West Burma terrane, Woyla terranes). The northwards drift of these terranes was effected by the opening and closing of three successive Tethys oceans, the Paleo-Tethys, Meso-Tethys and Ceno-Tethys. Terrane assembly took place between the Late Paleozoic and Cenozoic, but the precise timings of amalgamation and accretion are still contentious. Amalgamation of South China and Indochina/East Malaya occurred during the Early Carboniferous along the Song Ma Suture to form “Cathaysialand”. Cathaysialand, together with North China, formed a large continental region within the Paleotethys during the Late Carboniferous and Permian. Paleomagnetic data indicate that this continental region was in equatorial to low northern paleolatitudes which is consistent with the tropical Cathaysian flora developed on these terranes. The Tarim terrane (together with the Kunlun, Qaidam and Ala Shan terranes) accreted to Kazakhstan/Siberia in the Permian. This was followed by the suturing of Sibumasu and Qiangtang to Cathaysialand in the Late Permian-Early Triassic, largely closing the Paleo-Tethys. North and South China were amalgamated in the Late Triassic-Early Jurassic and finally welded to Laurasia around the same time. The Lhasa terrane accreted to the Sibumasu-Qiangtang terrane in the Late Jurassic and the Kurosegawa terrane of Japan, interpreted to be derived from Australian Gondwanaland, accreted to Japanese Eurasia, also in the Late Jurassic. The West Burma and Woyla terranes drifted northwards during the Late Jurassic and Early Cretaceous as the Ceno-Tethys opened and the Meso-Tethys was destroyed by subduction beneath Eurasia and were accreted to proto-Southeast Asia in the Early to Late Cretaceous. The Southwest Borneo and Semitau terranes amalgamated to each other and accreted to Indochina/East Malaya in the Late Cretaceous and the Hainanese terranes probably accreted to South China sometime in the Cretaceous.  相似文献   

14.
华南地区古地磁研究初步成果及其地质意义   总被引:4,自引:0,他引:4  
依据2000余个热退磁样品,经计算获得极点60余个,可以构成代表华南地区不同块体的视极移轨迹5条,并与已知的华北和扬子两地块的极移轨迹进行对比,结合地质构造特征,在研究区内划分出扬子、华夏两个地块和江南、怀玉山-越北两个地体。同时本文还对有关的地层对比和各地块间的演化关系作了分析讨论。  相似文献   

15.
中国河南东秦岭—桐柏成矿区、带的划分   总被引:1,自引:0,他引:1  
东秦岭桐柏区域成矿规律的研究,是以不同时期的板块或地体俯冲或碰撞增生构造分析为基础。根据华北地台南缘由两个早寒武地体所组成,划分出华熊成矿区和嵩箕成矿区。著名的秦岭—桐柏褶皱带即为秦岭—桐柏成矿带;而成矿亚带的划分是以不同时期活动陆缘增生或造山带为根据的,它们分别是中元古、加里东和海西成矿亚带。文中阐述了构造环境和成矿作用,并提出花岗岩类及其成矿作用板块构造模式,特别是中生代大储内都挤压或A—型俯冲的成岩成矿模式。  相似文献   

16.
杨暹和  张洪刚 《地球学报》1984,6(3):195-206
<正> 我国的元古代地层以蓟县、三峡等剖面为标准,自上而下划分为震旦系、青白口系、蓟县系、长城系和五台系,时限为610—2500百万年。西南地区的元古界自勒克莱(M.A.Leclere,1898)开始研究,已有80多年的研究历史,三十至四十年代通过谭锡畴、李春昱(1929—1933)、王曰伦(1937)、丁道衡(1941)、黄汲清(1945)、孟宪民等(1947)地质前辈的研究,初步查明了本区元古界的基本轮廓。  相似文献   

17.
East and Southeast Asia comprises a complex assembly of allochthonous continental lithospheric crustal fragments (terranes) together with volcanic arcs, and other terranes of oceanic and accretionary complex origins located at the zone of convergence between the Eurasian, Indo-Australian and Pacific Plates. The former wide separation of Asian terranes is indicated by contrasting faunas and floras developed on adjacent terranes due to their prior geographic separation, different palaeoclimates, and biogeographic isolation. The boundaries between Asian terranes are marked by major geological discontinuities (suture zones) that represent former ocean basins that once separated them. In some cases, the ocean basins have been completely destroyed, and terrane boundaries are marked by major fault zones. In other cases, remnants of the ocean basins and of subduction/accretion complexes remain and provide valuable information on the tectonic history of the terranes, the oceans that once separated them, and timings of amalgamation and accretion. The various allochthonous crustal fragments of East Asia have been brought into close juxtaposition by geological convergent plate tectonic processes. The Gondwana-derived East Asia crustal fragments successively rifted and separated from the margin of eastern Gondwana as three elongate continental slivers in the Devonian, Early Permian and Late Triassic–Late Jurassic. As these three continental slivers separated from Gondwana, three successive ocean basins, the Palaeo-Tethys,. Meso-Tethys and Ceno-Tethys, opened between these and Gondwana. Asian terranes progressively sutured to one another during the Palaeozoic to Cenozoic. South China and Indochina probably amalgamated in the Early Carboniferous but alternative scenarios with collision in the Permo–Triassic have been suggested. The Tarim terrane accreted to Eurasia in the Early Permian. The Sibumasu and Qiangtang terranes collided and sutured with Simao/Indochina/East Malaya in the Early–Middle Triassic and the West Sumatra terrane was transported westwards to a position outboard of Sibumasu during this collisional process. The Permo–Triassic also saw the progressive collision between South and North China (with possible extension of this collision being recognised in the Korean Peninsula) culminating in the Late Triassic. North China did not finally weld to Asia until the Late Jurassic. The Lhasa and West Burma terranes accreted to Eurasia in the Late Jurassic–Early Cretaceous and proto East and Southeast Asia had formed. Palaeogeographic reconstructions illustrating the evolution and assembly of Asian crustal fragments during the Phanerozoic are presented.  相似文献   

18.
中国东部晚元古代—三叠纪古板块的运动学研究   总被引:1,自引:1,他引:1  
本文在认真选择现有的、比较可靠的古地磁资料基础之上,综合构造变形、沉积古地理、岩浆活动与变质作用的资料,再造了中国东部各板块自晚元古代(晨旦纪)到三叠纪的古构造图。晋宁事件以后直到古生代的整个时期,华南各板块与中朝板块张裂分离,保持相当的距离并在中、低纬度地带不断迁移,形成各具特色的构造演化史。三叠世末期,临沧、保山地体拼合到扬子板块的西侧,湘桂板块可能插入南华板块;中三叠世末期南华板块与扬子板块拼合,并使它们发生普遍的褶皱;晚三叠世末期,扬子板块才与中朝板块拼合,中国东部各板块联成一体,使构造格架基本定型。  相似文献   

19.
青藏高原的构造分区及其边界的变形构造特征   总被引:16,自引:4,他引:16       下载免费PDF全文
宏观构造特征的确立对青藏高原隆升和“动力学建模”具有重要意义。青藏高原是由来自塔里木-中朝板块的北昆仑-阿尔金-祁连地体,华南-东南亚板块的南昆仑地体、可可西里-巴颜喀拉地体和冈瓦纳古陆的羌塘地体、冈底斯地体及喜马拉雅地体等3大板块(或古陆)的6个地体经多次裂解、会聚和陆内俯冲作用拼合而成的巨型“会聚-陆内俯冲型”岩石圈块体,它以青藏高原南缘结合带、青藏高原北缘结合带和青藏高原东缘结合带依次与印度岩石圈块体、塔里木-阿拉善-鄂尔多斯岩石圈块体和扬子岩石圈块体相隔。按现今动力学特征,这一巨型岩石圈块体(一级构造单元)又可进一步划分为喜马拉雅、藏北、青南和昆仑-阿尔金-祁连等4个二级构造单元(地块),它们依次以雅鲁藏布江结合带、西金乌拉-金沙江结合带、中昆仑结合带为界。4个地块又可进一步划分为若干以断裂为界的三级构造单元(地体)。组成青藏岩石圈块体的各构造单元处于统一的地球动力学系统,它总的表现为:在印度板块向欧亚板块持续、强烈俯冲和热的、具柔性流变学特征的青藏块体整体向北北东方向移动的区域构造背景上,其南、北两侧的喜马拉雅地块、昆仑-阿尔金-祁连地块分别向冷的、刚性的印度岩石圈块体和塔里木- 阿拉善-鄂尔多斯岩石圈块体不对称逆冲叠覆。位于青藏高原腹部的藏北地块和青南地块,在深部存在大量低速体向上涌动和整体自西向东扩展的区域构造背景上,前者叠置近南北向挤压,形成以南北向断陷带及北西和北东向共轭走滑为主的构造格局,而青南地块除松潘-甘孜地体显示自北而南的逆冲叠覆外,可可西里-巴颜喀拉地体以逐一向东挤出的左行走滑作用为主,以致整个青南地块呈现向扬子岩石圈块体逆冲扩展和向三江构造带平移扩展。因此,就现今动力学而言,青藏高原在随着时间推移、隆升速度不断加快的同时,还逐渐向外缘的刚性地块扩展,即高原面积在不断增大。因此青藏高原的边界具有扩展性质,按扩展机制可区分两类扩展型动力边界:走滑型扩展边界和逆冲型扩展边界。典型的走滑型扩展边界位于青藏高原北缘的阿尔金山和青藏高原东缘的三江地区,青藏高原南缘的动力边界属典型的逆冲型扩展边界,而位于祁连山和龙门山的动力边界兼有逆冲和走滑双重扩展性质。  相似文献   

20.
双溪坞群、双桥山群等为江南古岛弧浙赣段的前寒武纪基底地层。依据基底地层建造的差异及蛇绿岩套和碰撞花岗岩等的分布,可将浙赣段江南古岛弧沿赣东北断裂划分为怀玉地体和九岭地体。怀玉地体基底地层建造以火山岩占主导,10—13亿年是该地体的重要成壳时期。九岭地体基底地层建造以浊流复理石占主导,14—16亿年为该地体的重要成壳时期。距今9亿年左右两地体相互碰撞拼接,与此同时,华夏古陆向江南古岛弧碰撞,至~8亿年、完成碰撞对接,开始震旦系盖层沉积。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号