首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Gudmundsson GH 《Nature》2006,444(7122):1063-1064
Most of the ice lost from the Antarctic ice sheet passes through a few fast-flowing and highly dynamic ice streams. Quantifying temporal variations in flow in these ice streams, and understanding their causes, is a prerequisite for estimating the potential contribution of the Antarctic ice sheet to global sea-level change. Here I show that surface velocities on a major West Antarctic Ice Stream, Rutford Ice Stream, vary periodically by about 20 per cent every two weeks as a result of tidal forcing. Tidally induced motion on ice streams has previously been thought to be limited to diurnal or even shorter-term variations. The existence of strong fortnightly variations in flow demonstrates the potential pitfalls of using repeated velocity measurements over intervals of days to infer long-term change.  相似文献   

2.
Bell RE  Studinger M  Shuman CA  Fahnestock MA  Joughin I 《Nature》2007,445(7130):904-907
Water plays a crucial role in ice-sheet stability and the onset of ice streams. Subglacial lake water moves between lakes and rapidly drains, causing catastrophic floods. The exact mechanisms by which subglacial lakes influence ice-sheet dynamics are unknown, however, and large subglacial lakes have not been closely associated with rapidly flowing ice streams. Here we use satellite imagery and ice-surface elevations to identify a region of subglacial lakes, similar in total area to Lake Vostok, at the onset region of the Recovery Glacier ice stream in East Antarctica and predicted by ice-sheet models. We define four lakes through extensive, flat, featureless regions of ice surface bounded by upstream troughs and downstream ridges. Using ice velocities determined using interferometric synthetic aperture radar (InSAR), we find the onset of rapid flow (moving at 20 to 30 m yr(-1)) of the tributaries to the Recovery Glacier ice stream in a 280-km-wide segment at the downslope margins of these four subglacial lakes. We conclude that the subglacial lakes initiate and maintain rapid ice flow through either active modification of the basal thermal regime of the ice sheet by lake accretion or through scouring bedrock channels in periodic drainage events. We suggest that the role of subglacial lakes needs to be considered in ice-sheet mass balance assessments.  相似文献   

3.
Wiens DA  Anandakrishnan S  Winberry JP  King MA 《Nature》2008,453(7196):770-774
Long-period seismic sources associated with glacier motion have been recently discovered, and an increase in ice flow over the past decade has been suggested on the basis of secular changes in such measurements. Their significance, however, remains uncertain, as a relationship to ice flow has not been confirmed by direct observation. Here we combine long-period surface-wave observations with simultaneous Global Positioning System measurements of ice displacement to study the tidally modulated stick-slip motion of the Whillans Ice Stream in West Antarctica. The seismic origin time corresponds to slip nucleation at a region of the bed of the Whillans Ice Stream that is likely stronger than in surrounding regions and, thus, acts like an 'asperity' in traditional fault models. In addition to the initial pulse, two seismic arrivals occurring 10-23 minutes later represent stopping phases as the slip terminates at the ice stream edge and the grounding line. Seismic amplitude and average rupture velocity are correlated with tidal amplitude for the different slip events during the spring-to-neap tidal cycle. Although the total seismic moment calculated from ice rigidity, slip displacement, and rupture area is equivalent to an earthquake of moment magnitude seven (M(w) 7), seismic amplitudes are modest (M(s) 3.6-4.2), owing to the source duration of 20-30 minutes. Seismic radiation from ice movement is proportional to the derivative of the moment rate function at periods of 25-100 seconds and very long-period radiation is not detected, owing to the source geometry. Long-period seismic waves are thus useful for detecting and studying sudden ice movements but are insensitive to the total amount of slip.  相似文献   

4.
Hellmer HH  Kauker F  Timmermann R  Determann J  Rae J 《Nature》2012,485(7397):225-228
The Antarctic ice sheet loses mass at its fringes bordering the Southern Ocean. At this boundary, warm circumpolar water can override the continental slope front, reaching the grounding line through submarine glacial troughs and causing high rates of melting at the deep ice-shelf bases. The interplay between ocean currents and continental bathymetry is therefore likely to influence future rates of ice-mass loss. Here we show that a redirection of the coastal current into the Filchner Trough and underneath the Filchner-Ronne Ice Shelf during the second half of the twenty-first century would lead to increased movement of warm waters into the deep southern ice-shelf cavity. Water temperatures in the cavity would increase by more than 2 degrees Celsius and boost average basal melting from 0.2 metres, or 82 billion tonnes, per year to almost 4 metres, or 1,600 billion tonnes, per year. Our results, which are based on the output of a coupled ice-ocean model forced by a range of atmospheric outputs from the HadCM3 climate model, suggest that the changes would be caused primarily by an increase in ocean surface stress in the southeastern Weddell Sea due to thinning of the formerly consolidated sea-ice cover. The projected ice loss at the base of the Filchner-Ronne Ice Shelf represents 80 per cent of the present Antarctic surface mass balance. Thus, the quantification of basal mass loss under changing climate conditions is important for projections regarding the dynamics of Antarctic ice streams and ice shelves, and global sea level rise.  相似文献   

5.
Large proglacial lakes cool regional summer climate because of their large heat capacity, and have been shown to modify precipitation through mesoscale atmospheric feedbacks, as in the case of Lake Agassiz. Several large ice-dammed lakes, with a combined area twice that of the Caspian Sea, were formed in northern Eurasia about 90,000 years ago, during the last glacial period when an ice sheet centred over the Barents and Kara seas blocked the large northbound Russian rivers. Here we present high-resolution simulations with an atmospheric general circulation model that explicitly simulates the surface mass balance of the ice sheet. We show that the main influence of the Eurasian proglacial lakes was a significant reduction of ice sheet melting at the southern margin of the Barents-Kara ice sheet through strong regional summer cooling over large parts of Russia. In our simulations, the summer melt reduction clearly outweighs lake-induced decreases in moisture and hence snowfall, such as has been reported earlier for Lake Agassiz. We conclude that the summer cooling mechanism from proglacial lakes accelerated ice sheet growth and delayed ice sheet decay in Eurasia and probably also in North America.  相似文献   

6.
Rapid warming over the past 50?years on the Antarctic Peninsula is associated with the collapse of a number of ice shelves and accelerating glacier mass loss. In contrast, warming has been comparatively modest over West Antarctica and significant changes have not been observed over most of East Antarctica, suggesting that the ice-core palaeoclimate records available from these areas may not be representative of the climate history of the Antarctic Peninsula. Here we show that the Antarctic Peninsula experienced an early-Holocene warm period followed by stable temperatures, from about 9,200 to 2,500?years ago, that were similar to modern-day levels. Our temperature estimates are based on an ice-core record of deuterium variations from James Ross Island, off the northeastern tip of the Antarctic Peninsula. We find that the late-Holocene development of ice shelves near James Ross Island was coincident with pronounced cooling from 2,500 to 600?years ago. This cooling was part of a millennial-scale climate excursion with opposing anomalies on the eastern and western sides of the Antarctic Peninsula. Although warming of the northeastern Antarctic Peninsula began around 600 years ago, the high rate of warming over the past century is unusual (but not unprecedented) in the context of natural climate variability over the past two millennia. The connection shown here between past temperature and ice-shelf stability suggests that warming for several centuries rendered ice shelves on the northeastern Antarctic Peninsula vulnerable to collapse. Continued warming to temperatures that now exceed the stable conditions of most of the Holocene epoch is likely to cause ice-shelf instability to encroach farther southward along the Antarctic Peninsula.  相似文献   

7.
Cuffey KM  Marshall SJ 《Nature》2000,404(6778):591-594
During the last interglacial period (the Eemian), global sea level was at least three metres, and probably more than five metres, higher than at present. Complete melting of either the West Antarctic ice sheet or the Greenland ice sheet would today raise sea levels by 6-7 metres. But the high sea levels during the last interglacial period have been proposed to result mainly from disintegration of the West Antarctic ice sheet, with model studies attributing only 1-2 m of sea-level rise to meltwater from Greenland. This result was considered consistent with ice core evidence, although earlier work had suggested a much reduced Greenland ice sheet during the last interglacial period. Here we reconsider the Eemian evolution of the Greenland ice sheet by combining numerical modelling with insights obtained from recent central Greenland ice-core analyses. Our results suggest that the Greenland ice sheet was considerably smaller and steeper during the Eemian, and plausibly contributed 4-5.5 m to the sea-level highstand during that period. We conclude that the high sea level during the last interglacial period most probably included a large contribution from Greenland meltwater and therefore should not be interpreted as evidence for a significant reduction of the West Antarctic ice sheet.  相似文献   

8.
Over 70 lakes have now been identified beneath the Antarctic ice sheet. Although water from none of the lakes has been sampled directly, analysis of lake ice frozen (accreted) to the underside of the ice sheet above Lake Vostok, the largest of these lakes, has allowed inferences to be made on lake water chemistry and has revealed small quantities of microbes. These findings suggest that Lake Vostok is an extreme, yet viable, environment for life. All subglacial lakes are subject to high pressure (approximately 350 atmospheres), low temperatures (about -3 degrees C) and permanent darkness. Any microbes present must therefore use chemical sources to power biological processes. Importantly, dissolved oxygen is available at least at the lake surface, from equilibration with air hydrates released from melting basal glacier ice. Microbes found in Lake Vostok's accreted ice are relatively modern, but the probability of ancient lake-floor sediments leads to a possibility of a very old biota at the base of subglacial lakes.  相似文献   

9.
Bell RE  Studinger M  Tikku AA  Clarke GK  Gutner MM  Meertens C 《Nature》2002,416(6878):307-310
The subglacial Lake Vostok may be a unique reservoir of genetic material and it may contain organisms with distinct adaptations, but it has yet to be explored directly. The lake and the overlying ice sheet are closely linked, as the ice-sheet thickness drives the lake circulation, while melting and freezing at the ice-sheet base will control the flux of water, biota and sediment through the lake. Here we present a reconstruction of the ice flow trajectories for the Vostok core site, using ice-penetrating radar data and Global Positioning System (GPS) measurements of surface ice velocity. We find that the ice sheet has a significant along-lake flow component, persistent since the Last Glacial Maximum. The rates at which ice is frozen (accreted) to the base of the ice sheet are greatest at the shorelines, and the accreted ice layer is subsequently transported out of the lake. Using these new flow field and velocity measurements, we estimate the time for ice to traverse Lake Vostok to be 16,000-20,000 years. We infer that most Vostok ice analysed to date was accreted to the ice sheet close to the western shoreline, and is therefore not representative of open lake conditions. From the amount of accreted lake water we estimate to be exported along the southern shoreline, the lake water residence time is about 13,300 years.  相似文献   

10.
W S Paterson  N Reeh 《Nature》2001,414(6859):60-62
Thermal expansion of the oceans, as well as melting of glaciers, ice sheets and ice caps have been the main contributors to global sea level rise over the past century. The greatest uncertainty in predicting future sea level changes lies with our estimates of the mass balance of the ice sheets in Greenland and Antarctica. Satellite measurements have been used to determine changes in these ice sheets on short timescales, demonstrating that surface-elevation changes on timescales of decades or less result mainly from variations in snow accumulation. Here we present direct measurements of the changes in surface elevation between 1954 and 1995 on a traverse across the north Greenland ice sheet. Measurements over a time interval of this length should reflect changes in ice flow-the important quantity for predicting changes in sea level-relatively unperturbed by short-term fluctuations in snow accumulation. We find only small changes in the eastern part of the transect, except for some thickening of the north ice stream. On the west side, however, the thinning rates of the ice sheet are significantly higher and thinning extends to higher elevations than had been anticipated from previous studies.  相似文献   

11.
数据流广泛应用于现实世界的多个领域,但是不平衡数据流的存在严重影响了传统数据流分类器的性能.针对不平衡数据流问题,提出了随机平衡采样算法(RBS)处理数据流的不平衡问题,并以RBS算法为基础提出了随机平衡采样数据流集成算法(RBSSEA)旨在解决不平衡数据流的分类问题.最后,分别采用合成和真实数据集对RBSSEA算法进行验证,实验结果证明RBSSEA算法在解决不平衡数据流分类问题具有一定的优势.  相似文献   

12.
Antarctic ice-sheet loss driven by basal melting of ice shelves   总被引:6,自引:0,他引:6  
Accurate prediction of global sea-level rise requires that we understand the cause of recent, widespread and intensifying glacier acceleration along Antarctic ice-sheet coastal margins. Atmospheric and oceanic forcing have the potential to reduce the thickness and extent of floating ice shelves, potentially limiting their ability to buttress the flow of grounded tributary glaciers. Indeed, recent ice-shelf collapse led to retreat and acceleration of several glaciers on the Antarctic Peninsula. But the extent and magnitude of ice-shelf thickness change, the underlying causes of such change, and its link to glacier flow rate are so poorly understood that its future impact on the ice sheets cannot yet be predicted. Here we use satellite laser altimetry and modelling of the surface firn layer to reveal the circum-Antarctic pattern of ice-shelf thinning through increased basal melt. We deduce that this increased melt is the primary control of Antarctic ice-sheet loss, through a reduction in buttressing of the adjacent ice sheet leading to accelerated glacier flow. The highest thinning rates occur where warm water at depth can access thick ice shelves via submarine troughs crossing the continental shelf. Wind forcing could explain the dominant patterns of both basal melting and the surface melting and collapse of Antarctic ice shelves, through ocean upwelling in the Amundsen and Bellingshausen seas, and atmospheric warming on the Antarctic Peninsula. This implies that climate forcing through changing winds influences Antarctic ice-sheet mass balance, and hence global sea level, on annual to decadal timescales.  相似文献   

13.
The three-dimensional finite difference thermodynamic coupled model on Antarctic ice sheet, GLIMMER model, is described. An idealized ice sheet numerical test was conducted under the EISMINT-1 benchmark, and the characteristic curves of ice sheets under steady-state was obtained. Based on this, this model was simplified from a 3-dimensional one to 2-dimensional one. Improvement of the difference method and coordinate system was proposed. Evolution of the 2-dimensional ice flow was simulated under coupled temperature field conditions. The results showed that the characteristic curves deriving from the conservation of the mass, momentum and energy agree with the results of ice sheet profile simulated with GLIMMER model and with the theoretical results. The application prospect of the simplified 2-dimensional ice flow model to simulate the relation of age-depth-accumulation rate in Dome A region was discussed.  相似文献   

14.
The 3-dimensional finite difference thermodynamic coupled model on Antarctic ice sheet, GLIMMER model, is described. An idealized ice sheet numerical test was conducted under the EISMINT-1 benchmark, and the characteristic curves of ice sheets under steady state were obtained. Based on this, this model was simplified from a 3-dimensional one to 2-dimensional one. Improvement of the difference method and coordinate system was proposed. Evolution of the 2-dimensional ice flow was simulated under coupled temperature field conditions. The results showed that the characteristic curves deriving from the conservation of the mass, momentum and energy agree with the results of ice sheet profile simulated with GLIMMER model and with the theoretical results. The application prospect of the simplified 2-dimensional ice flow model to simulate the relation of age-depth-accumulation in Dome A region was discussed.  相似文献   

15.
Siegert MJ  Kwok R  Mayer C  Hubbard B 《Nature》2000,403(6770):643-646
It has now been known for several years that a 200-km-long lake, called Lake Vostok, lies beneath the ice sheet on which sits Vostok Station in Antarctica. The conditions at the base of the ice sheet above this subglacial lake can provide information about the environment within the lake, including the likelihood that it supports life. Here we present an analysis of the ice-sheet structure from airborne 60-MHz radar studies, which indicates that distinct zones of basal ice loss and accretion occur at the ice-water interface. Subglacial melting and net ice loss occur in the north of the lake and across its 200-km-long western margin, whereas about 150 m of ice is gained by subglacial freezing in the south. This indicates that significant quantities of water are exchanged between the base of the ice sheet and the lake waters, which will enrich the lake with gas hydrates, cause sediment deposition and encourage circulation of the lake water.  相似文献   

16.
Between 34 and 15 million years (Myr) ago, when planetary temperatures were 3-4 degrees C warmer than at present and atmospheric CO2 concentrations were twice as high as today, the Antarctic ice sheets may have been unstable. Oxygen isotope records from deep-sea sediment cores suggest that during this time fluctuations in global temperatures and high-latitude continental ice volumes were influenced by orbital cycles. But it has hitherto not been possible to calibrate the inferred changes in ice volume with direct evidence for oscillations of the Antarctic ice sheets. Here we present sediment data from shallow marine cores in the western Ross Sea that exhibit well dated cyclic variations, and which link the extent of the East Antarctic ice sheet directly to orbital cycles during the Oligocene/Miocene transition (24.1-23.7 Myr ago). Three rapidly deposited glacimarine sequences are constrained to a period of less than 450 kyr by our age model, suggesting that orbital influences at the frequencies of obliquity (40 kyr) and eccentricity (125 kyr) controlled the oscillations of the ice margin at that time. An erosional hiatus covering 250 kyr provides direct evidence for a major episode of global cooling and ice-sheet expansion about 23.7 Myr ago, which had previously been inferred from oxygen isotope data (Mi1 event).  相似文献   

17.
根据泥石流发育条件的形成规律与自然环境演变规律之间的关系分析,泥石流物质来源主要积累于物理风化盛行的冰期或冰缘气候环境阶段,水动力条件主要出现在融冰雪水或降水骤增时间——即间冰期或间冰缘期(阶)气候环境阶段.庐山、北京西山和燕山都反映出这种规律性,以马兰期黄土层为标志,晚更新世晚期至少有2期泥石流堆积,全新世有4期泥石沉堆积.从而划分出泥石流发育的活跃期和停滞期,目前中国泥石流仍处活跃期,即相当于间冰期阶段.按中国泥石流发育条件形成与自然环境演变规律间的关系,中国泥石流发育系统有3种结构模式,即西部高山型,北方冰缘型,南方霜冻型.再按气候差异,绘出了中国泥石沉分区图.  相似文献   

18.
Current ice loss from the West Antarctic Ice Sheet (WAIS) accounts for about ten per cent of observed global sea-level rise. Losses are dominated by dynamic thinning, in which forcings by oceanic or atmospheric perturbations to the ice margin lead to an accelerated thinning of ice along the coastline. Although central to improving projections of future ice-sheet contributions to global sea-level rise, the incorporation of dynamic thinning into models has been restricted by lack of knowledge of basal topography and subglacial geology so that the rate and ultimate extent of potential WAIS retreat remains difficult to quantify. Here we report the discovery of a subglacial basin under Ferrigno Ice Stream up to 1.5?kilometres deep that connects the ice-sheet interior to the Bellingshausen Sea margin, and whose existence profoundly affects ice loss. We use a suite of ice-penetrating radar, magnetic and gravity measurements to propose a rift origin for the basin in association with the wider development of the West Antarctic rift system. The Ferrigno rift, overdeepened by glacial erosion, is a conduit which fed a major palaeo-ice stream on the adjacent continental shelf during glacial maxima. The palaeo-ice stream, in turn, eroded the 'Belgica' trough, which today routes warm open-ocean water back to the ice front to reinforce dynamic thinning. We show that dynamic thinning from both the Bellingshausen and Amundsen Sea region is being steered back to the ice-sheet interior along rift basins. We conclude that rift basins that cut across the WAIS margin can rapidly transmit coastally perturbed change inland, thereby promoting ice-sheet instability.  相似文献   

19.
任意旋成面跨音速叶栅流动的一种高效率解法   总被引:1,自引:0,他引:1  
提出了任意旋成面叶栅跨音速绕流的一种高效率解法。导出了以Von Misses 坐标为自变量的任意旋成面叶栅中流动的流线控制方程;简单而有效地处理了速度的双 值问题。用数值方法研究了流面半径和流片厚度随轴向变化对于流动的影响。  相似文献   

20.
冰川运动速度是计算极地物质平衡和对冰盖和冰架数值模拟的重要参数.针对传统冰川运动速度提取算法的不足和局限,基于差分干涉技术(DInSAR)和多孔径干涉技术(MAI)开展二维冰川运动速度的提取研究.将该算法应用于南极Lambert流域冰川运动速度的提取,得到了研究区域高精度的二维冰川运动速度场,将采用偏移量跟踪算法提取的冰川运动速度和本文提取的冰川运动速度进行了对比分析和精度评价;结合研究区域已有历史观测数据,分析全球气候变化背景下Lambert流域冰川的动态变化.研究结果表明,基于DInSAR和MAI的冰川运动速度提取算法优于偏移量跟踪算法;近20年的冰川运动速度时间序列数据显示Lambert流域的冰川运动速度基本处于稳定状态.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号