首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The kinetics of dissolution of chalcopyrite in ferric ion media   总被引:1,自引:0,他引:1  
The kinetics of dissolution of chalcopyrite (CuFeS2) in ferric chloride-hydrochloric acid and in ferric sulfate-sulfuric acid solutions have been investigated using the rotating disk technique. Over the temperature range 50 to 100‡C, linear kinetics were observed in the chloride media while nonlinear kinetics were noted in the sulfate system. The apparent activation energy in the chloride system was about 11 kcal/mole. The rate increased with increasing ferric chloride concentrations but was insensitive to the concentrations of hydrochloric acid, the ferrous chloride reaction product and “inert≓ magnesium or lithium chlorides. Cupric chloride substantially accelerated the rate. Small amounts of sulfate in an otherwise all chloride system greatly reduce the chalcopyrite leaching rate; still larger amounts of sulfate make the system behave essentially like the slower-reacting ferric sulfate medium.  相似文献   

2.
The kinetics of dissolution of chalcopyrite (CuFeS2) in ferric chloride-hydrochloric acid and in ferric sulfate-sulfuric acid solutions have been investigated using the rotating disk technique. Over the temperature range 50 to 100?C, linear kinetics were observed in the chloride media while nonlinear kinetics were noted in the sulfate system. The apparent activation energy in the chloride system was about 11 kcal/mole. The rate increased with increasing ferric chloride concentrations but was insensitive to the concentrations of hydrochloric acid, the ferrous chloride reaction product and “inert? magnesium or lithium chlorides. Cupric chloride substantially accelerated the rate. Small amounts of sulfate in an otherwise all chloride system greatly reduce the chalcopyrite leaching rate; still larger amounts of sulfate make the system behave essentially like the slower-reacting ferric sulfate medium.  相似文献   

3.
The reaction products formed during the leaching of bornite in either ferric chloride or ferric sulfate media depend on the leaching conditions as well as the particle size of the bornite. The extent of dissolution is always more vigorous in the ferric chloride system and increases with increasing temperature in either system. The reaction initially involves the rapid outward diffusion of copper to form slightly nonstoichiometric bornite (Cu5-xFeS4), chalcopyrite, and covellite. The non-stoichiometric bornite is progressively converted to a Cu3FeS4 phase, which varies considerably in its composition, and to covellite. Although the reaction at low temperature terminates at the Cu3FeS4 phase, leaching at higher temperatures results in further dissolution to elemental sulfur and soluble Cu2+ and Fe2+. The leaching ofmassive bornite illustrates the complexities of the leaching reaction more clearly than is observed for the finelypaniculate bornite. In leached massive bornite, a distinct covellite zone appears in the Cu3FeS4 phase; as well, chalcopyrite exsolution lamellae rimmed by a copper sulfide (possibly digenite) appear in the covellite zone, in the Cu3FeS4 phase, and in the nonstoichiometric bornite. The experimental leaching results, especially those involving massive bornite, are generally consistent with the mineralogical trends produced by supergene alteration of bornite ores, but a significant difference is that the Cu3FeS4 phase does not correspond closely to the mineral idaite.  相似文献   

4.
The dissolution of galena in ferric chloride media   总被引:1,自引:0,他引:1  
The dissolution of galena (PbS) in ferric chloride-hydrochloric acid media has been investigated over the temperature range 28 to 95 °C and for alkali chloride concentrations from 0 to 4.0 M. Rapid parabolic kinetics were observed under all conditions, together with predominantly (>95 pet) elemental sulfur formation. The leaching rate decreased slightly with increasing FeCl3 concentrations in the range 0.1 to 2.0 M, and was essentially independent of the concentration of the FeCl2 reaction product. The rate was relatively insensitive to HCl concentrations <3.0 M, but increased systematically with increasing concentrations of alkali or alkaline earth chlorides. Most significantly, the leaching rate decreased sharply and linearly with increasing initial concentrations of PbCl2 in the ferric chloride leaching media containing either 0.0 or 3.0 M NaCl. Although the apparent activation energy was in the range 40 to 45 kJ/mol (∼10 kcal/mol), this value was reduced to 16 kJ/mol (3.5 kcal/mol) when the influence of the solubility of lead chloride on the reaction rate was taken into consideration. The experimental results are consistent with rate control by the outward diffusion of the PbCl2 reaction product through the solution trapped in pores in the constantly thickening elemental sulfur layer formed on the surface of the galena.  相似文献   

5.
The leaching of chalcopyrite with ferric sulfate   总被引:1,自引:0,他引:1  
The leaching kinetics of natural chalcopyrite crystals with ferric sulfate was studied. The morphology of the leached chalcopyrite and the electrochemical properties of chalcopyrite electrodes also were investigated. The leaching of chalcopyrite showed parabolic-like kinetics initially and then showed linear kinetics. In the initial stage, a dense sulfur layer formed on the chalcopyrite surface. The growth of the layer caused it to peel from the surface, leaving a rough surface. In the linear stage, no thick sulfur layer was observed. In this investigation, chalcopyrite leaching in the linear stage was principally studied. The apparent activation energy for chalcopyrite leaching was found to range from 76.8 to 87.7 kJ mol−1, and this suggests that the leaching of chalcopyrite is chemically controlled. The leaching rate of chalcopyrite increases with an increase in Fe(SO4)1.5 concentration up to 0.1 mol dm−3, but a further increase of the Fe(SO4)1.5 concentration has little effect on the leaching rate. The dependency of the mixed potential upon Fe(SO4)1.5 concentration was found to be 79 mV decade−1 from 0.01 mol dm−3 to 1 mol dm−3 Fe(SO4)1.5. Both the leaching rate and the mixed potential decreased with an increased FeSO4 concentration. The anodic current of Fe(II) oxidation on the chalcopyrite surface in a sulfate medium was larger than that in a chloride medium.  相似文献   

6.
The dissolution of sphalerite, (Zn,Fe)S, in ferric sulfate media was investigated using closely sized fractions of crushed sphalerite crystals. Linear kinetics were observed, and the rate increased in proportion to the surface area, as the average particle size of the sphalerite decreased. The predominant reaction products are ZnSO4, FeSO4, and elemental sulfur. The leaching rate increases with increasing temperature, and the apparent activation energy is 44 kJ/mol. The relatively high apparent activation energy suggests that the rate is chemically controlled, a conclusion supported by the insensitivity of the rate of the rotation speed that was observed in complementary rotating disk experiments. The rate increases as the 0.3 to 0.4 power of the Fe(SO4)1.5 concentration, and is nearly independent of the pulp density, in the presence of a stoichiometric excess of ferric sulfate. In 0.3 M Fe(SO4)1.5 media, the rate increases with increasing acid concentrations >0.1 M H2SO4, but is insensitive to more dilute acid concentrations. In the absence of ferric ions, the rate increases rapidly with increasing H2SO4 concentrations, and relatively rapid rates are observed in solutions containing >0.5 M H2SO4. The rate decreases with increasing initial concentrations of ZnSO4, MgSO4, or FeSO4 in the ferric sulfate leaching solution, and this emphasizes the importance of maintaining the dissolved iron in a fully oxidized state in a commercial leaching operation.  相似文献   

7.
Chloride leaching processes have significant potential for treating complex sulfides. One advantage of chloride leaching is fast dissolution rates for most sulfide minerals. This experimental study is concerned with ferric chloride leaching of sphalerite, a common component of many complex concentrates. The effects of stirring, temperature, ferric ion concentration, and particle size have been examined. In addition, reaction residues at various levels of zinc extraction were examined by SEM, and the products of reaction were identified by energy dispersive X-ray analysis and X-ray diffraction. These observations indicated that the dissolution reaction is topochemical. Moreover, the leaching results fit a surface reaction control model. The activation energy was calculated to be 58.4 kJ/mole which is reasonable for a rate limiting surface reaction. The order of the reaction was 0.5 with respect to Fe3+ at low concentrations and zero at high concentrations. The change in reaction order occurred at similar Fe3+ concentrations for various particle sizes. This is believed to be indicative of an electrochemical reaction mechanism at low Fe3+ and an adsorption mechanism at higher Fe3+. A kinetic model for the ferric chloride leaching of sphalerite was also obtained for the lower Fe3+ concentrations and is given by: (ie5-01) This model is in excellent agreement with the experimental results for fractions of zinc extracted up to 0.95.  相似文献   

8.
The leaching kinetics of a low grade-calcareous sphalerite concentrate containing 38% ankerite and assaying 32% Zn, 7% Pb and 2.2% Fe was studied in HCl–FeCl3 solution. An L16 (five factors in four levels) standard orthogonal array was employed to evaluate the effect of Fe(III) and HCl concentration, reaction temperature, solid-to-liquid ratio and particle size on the reaction rate of sphalerite. Statistical techniques were used to determine that pulp density and Fe(III) concentration were the most significant factors affecting the leaching kinetics and to determine the optimum conditions for dissolution. The kinetic data were analyzed with the shrinking particle and shrinking core models. A new variant of the shrinking core model (SCM) best fitted the kinetic data in which both the interfacial transfer and diffusion across the product layer affect the reaction rate. The orders of reaction with respect to (CFe3+), (CHCl), and (S/L) were 0.86, 0.21 and − 1.54, respectively. The activation energy for the dissolution was found to be 49.2 kJ/mol and a semi-empirical rate equation was derived to describe the process. Similar kinetic behavior was observed during sphalerite dissolution in acidic ferric sulphate and ferric chloride solutions, but the reaction rate constants obtained by leaching in chloride solutions were about tenfold higher than those in sulphate solutions.  相似文献   

9.
A new hydrometallurgical leaching process, which dissolves lead concentrates with acidified ferric fluosilicate solution, has been investigated for the selective extraction of lead and zinc from lead concentrates containing galena. The leaching of the Pine Point lead concentrate by ferric fluosilicate solutions was studied under various experimental conditions in the temperature range 20 °C to 95 °C. Temperature had a pronounced effect on the dissolution of the concentrates. The rates of lead leaching are very rapid over the temperature range 38 °C to 95 °C. The kinetics of zinc extraction are much lower than those of lead extraction. The reaction rates for the dissolution of galena were found to be controlled by surface chemical reaction. The apparent activation energy of the leaching reaction was calculated to be 62.1 kJ/mol. The initial concentrations of Pb2+, H+, and Fe3+ in the lixiviant do not have a significant effect on the rate or extent of lead extraction under the experimental conditions in this study.  相似文献   

10.
The effects of ferrous ions on chalcopyrite oxidation with ferric ions in 0.1 mol dm−3 sulfuric acid solutions were investigated by leaching experiments at 303 K in nitrogen. With high cupric ion concentrations, the chalcopyrite oxidation was enhanced by high concentrations of ferrous ions and copper extraction was mainly controlled by the concentration ratio of ferrous to ferric ions or the redox potential of solutions. Ferrous ions, however, suppressed the chalcopyrite oxidation when cupric ion concentrations were low. A reaction model, which involves chalcopyrite reduction to intermediate Cu2S by ferrous ions and oxidation of the Cu2S by ferric ions, was proposed to interpret the results.  相似文献   

11.
Reaction mechanism for the acid ferric sulfate leaching of chalcopyrite   总被引:1,自引:0,他引:1  
The acid ferric sulfate leaching of chalcopyrite, CuFeS2 + 4Fe+3 = Cu+2 + 5Fe+2 + 2S0 was studied using monosize particles in a well stirred reactor at ambient pressure and dilute solid phase concentration in order to obtain fundamental details of the reaction kinetics. The principal rate limiting step for this electrochemical reaction appears to be a transport process through the elemental sulfur reaction product. This conclusion has been reached in other investigations and is supported by data from this investigation in which the reaction rate was found to have an inverse second order dependence on the initial particle diameter. Furthermore, the reaction kinetics were found to be independent of Fe+3, Fe+2, Cu+2 and H2SO4 in the range of additions studied. The unique aspect of this particular research effort is that data analysis, using the Wagner theory of oxidation, suggests that the rate limiting process may be the transport of electrons through the elemental sulfur layer. Predicted reaction rates calculated from first principles using the physicochemical properties of the system (conductivity of elemental sulfur and the free energy change for the reaction) agree satisfactorily with experimentally determined rates. Further evidence which supports this analysis includes an experimental activation energy of 20 kcal/mol (83.7 kJ/mol) which is approximately the same as the apparent activation energy for the transfer of electrons through elemental sulfur, 23 kcal/ mol (96.3 kJ/mol) calculated from both conductivity and electron mobility measurements reported in the literature. formerly Metallurgy Graduate Student, University of Utah.  相似文献   

12.
The recovery of copper from chalcopyrite by leaching is complex not only due to the slow dissolution kinetics of this mineral in most aqueous media but also due to the production of solutions that are heavily contaminated with iron. On the contrary, the leaching of sulfidized chalcopyrite is very attractive because of a faster and more selective dissolution of copper compared to the leaching of the untreated chalcopyrite. In this work, the results of leaching in H2SO4-NaCl-O2 solutions of sulfidized chalcopyrite concentrate are discussed. Experiments were carried out with chalcopyrite concentrates previously reacted with elemental sulfur at 375 °C for 60 minutes. The results showed that the concentration of chloride ions below 0.5 M, temperature, and leaching time are important variables for the extraction of Cu. On the other hand, Fe extraction was little affected by the same variables, remaining below 6 pct for all the experimental conditions tested. Microscopic observations of the leached particles showed that the elemental sulfur produced by the reaction does not form a coherent layer surrounding the particle, but rather concentrates in certain locations as large clusters. The leaching kinetics can be accurately described by a nonreactive core-shrinking rim topochemical expression for spherical particles 1 − (1 − 0.45X)1/3=kt. The activation energy found was 76 kJ/mol for the range 85 °C to 100 °C.  相似文献   

13.
The leaching of galena in ferric sulfate media   总被引:1,自引:0,他引:1  
The leaching of galena (PbS) in ferric sulfate media was investigated over the temperature range 55 °C to 95 °C and for various Fe(SO4)1.5, H2SO4, FeSO4, and MgSO4 concentrations. Relatively slow kinetics were consistently observed; in most instances, the 1-2/3α-(1−α)2/3 vs time relationship, indicative of a diffusion-controlled reaction, was closely obeyed. The diffusion-controlled kinetics were attributed to the formation of a tenacious layer of PbSO4 and S0 on the surface of the galena. The generation and morphology of the reaction products were systematically determined by scanning electron microscopy, and complex growth mechanisms were illustrated. The leaching rate increased rapidly with increasing temperature, and the apparent activation energy is 61.2 kJ/mol. The rate increases as the 0.5 power of the ferric ion concentration but is nearly independent of the concentration of the FeSO4 reaction product. The rate is insensitive to H2SO4 concentrations <0.1 M but increases at higher acid levels. The presence of neutral sulfates, such as MgSO4, decreases the leaching rate to a modest extent.  相似文献   

14.
Kinetics of galena dissolution in ferric chloride solutions   总被引:2,自引:0,他引:2  
A leaching investigation of galena with ferric chloride has been carried out as a function of concentration of ferric chloride and sodium chloride, temperature, and particle size. Three size fractions were considered in this investigation, namely, 48 × 65, 35 × 48, and 28 × 35 mesh. The concentration ranges of ferric chloride and sodium chloride used in this investigation were 0 to 0.25 M and 0 to 3 M, respectively. The reaction rate mechanism has been discussed in terms of a shrinking core model developed for cubic systems. Mass transport of ferric chlorocomplex through the product sulfur layer appears to be responsible for establishing the overall leaching rate under most of the conditions used in this investigation. The apparent activation energy for the leaching of 28 × 35 mesh galena with 0.1 M FeCl3, 1 M HC1, and 3.0 M NaCl was found to be about 8.05 kcal/mol (33.7 kJ/mol), which was partially contributed by diffusion and partially by the heat of reaction of the formation of ferric chlorocomplexes. Rate of dissolution at both 50° and 90 °C is greatly affected by ferric chloride concentration up to 0.2 M and is essentially constant with ferric chloride concentration above this value.  相似文献   

15.
The solution thermodynamics of acidified ferric chloride brine lixiviants and the dissolution kinetics of a galena concentrate in such solutions have been investigated. The distribution of the various metal chloro complexes calculated from available thermodynamic data shows that the distribution is shifted to the higher complexes, predominantly FeCl 3 o , FeCl 2 o , and PbCl 4 = , as the total Cl? concentration increases, and that the distribution is unaffected by the extent of reaction. The dissolution of PbS concentrate is presented as a competition between a nonoxidative reaction with H+ and the oxidative reaction with ferric ion. Acid dissolution of PbS predominates when the activity ratio of hydrogen ion to ferric ion is high. Under these conditions H2S is produced. When the activity ratio of hydrogen ion to ferric ion is low, and especially when the concentration of Fe3+ is greater than 0.15 M, oxidative dissolution of PbS becomes the controlling reaction. The dissolution can be represented by a shrinking core model with a surface chemical reaction as the rate controlling step. This is supported by the activation energy of 72.1 kJ/mole and the dependence of the rate on the inverse of the particle radius. The following rate equation was found to be in excellent agreement with the experimentally observed leaching behavior for 0.15 to 0.6 M [Fe+3] T up to approximately 90 to 95 pet extraction: $$1 - \left( {1 - \alpha } \right)^{1/3} = \left[ {\frac{{2.3 x 10^{12} }}{{r_0 }}\left[ {{\text{Fe}}^{{\text{ + 3}}} } \right]_T^{0.21} \exp \left( {\frac{{ - 72100}}{{{\text{R}}T}}} \right)} \right]t$$ The rate deviates from the 0.21 order for Fe+3 concentrations greater than 0.6 M. The deviation from the surface model at higher values of PbS conversion is due to the presence of solid PbCl2 in the pores of the reacting particles.  相似文献   

16.
Reaction mechanisms for the ferric chloride leaching of sphalerite are proposed based on data obtained in leaching and dual cell experiments presented in this work and in a previous study. The results from the leaching experiments show that at low concentrations the rate is proportional to [Fe3+]T 0.5 and [Cl-]T 0.43 but at higher concentrations the reaction order with respect to both [Fe3+]T and [Cl-]T decreases. Using dual cell experiments which allow the half cell reactions to be separated, increased rates are observed when NaCl is added to the anolyte and to the catholyte. The increase in rate is attributed to a direct, anodic electrochemical reaction of Cl- with the mineral. When NaCl is added only to the catholyte, a decrease in the rate is observed due to a decrease in theE 0 of the cathode which is attributed to the formation of ferric-chloro complexes. Several possible electrochemical mechanisms and mathematical models based on the Butler-Volmer relation are delineated, and of these, one model is selected which accounts for the experimentally observed changes in reaction order for both Fe3+ and Cl-. This analysis incorporates a charge transfer process for each ion and an adsorption step for ferric and chloride ions. The inhibiting effect of Fe2+ noted by previous investigators is also accounted for through a similar model which includes back reaction kinetics for Fe2+. The proposed models successfully provide a theoretical basis for describing the role of Cl-, Fe3+, and Fe2+ as well as their interrelationship in zinc sulfide leaching reactions. Possible applications of these results to chloride leaching systems involving other sulfides or complex sulfides are considered.  相似文献   

17.
The leaching of chalcopyrite with ferric chloride   总被引:1,自引:0,他引:1  
A comparative study of electrochemical leaching and chemical leaching of chalcopyrite was done to elucidate the leaching mechanism of chalcopyrite with FeCl3. The leaching rate of chalcopyrite exhibits a half order dependency on the FeCl3 concentration, whereas it is independent of the FeCl2 concentration. The mixed potential of chalcopyrite exhibits a 72 mV · decade−1 dependency upon FeCl3 concentration; no influence on the mixed potential was observed by the addition of FeCl2. In FeCl3 solutions acidified with HC1, the predominant chemical species of Fe(III) was found to be FeCl 2 u+ from equilibrium calculations. The concentration of this species is approximately proportional to the amount of FeCl3 added to the solutions. Based on these observations, an electrochemical mechanism is proposed which involves the oxidation of chalcopyrite and the reduction of FeCl 2 + , the predominant species of Fe(III). By converting the leaching rate to electric current density,i, 140 mV · decade−1 dependency of mixed potential,E, against logi is obtained. This dependency of the chemical leaching of chalcopyrite with FeCl3 as well as its activation energy agree with those for electrochemical leaching. These findings strongly support the electrochemical mechanism of FeCl3 leaching of chalcopyrite. Formerly Graduate Student, Kyoto University  相似文献   

18.
Hydrogen peroxide decomposition in acidic solutions is catalyzed by the free ferric ion, Fe3+. The following rate law for this reaction is determined by the initial rate method in solutions similar to those used for acidicin situ uranium leaching: wherek = 4.3 × 10−3 s°1 at 25 °C. From 25° to 50 °C, the activation energy is 85.6 kJ/mol. The decomposition of hydrogen peroxide proceeds by a particular redox reaction sequence that depends on the ratio of the concentrations of hydrogen peroxide to free ferric ion. The rate law determined here is consistent with the form derived from the redox sequence for the case where the ratio of hydrogen peroxide to free ferric ion concentration is greater than 1.0. The magnitude of the rate constant indicates that the decomposition of hydrogen peroxide may cause rapid loss of this oxidant in leaching solutions containing ferric ion. Formerly a Graduate Student with the Department of Geochemistry and Mineralogy, Pennsylvania State University,  相似文献   

19.
The solubility of silver chloride in various FeCl3-FeCl2-HCl solutions has been measured over the temperature range 20–100°C; the densities of the associated saturated solutions have also been determined. The solubility increases systematically with either rising temperature or increasing concentrations of the constituent chlorides. The solubility is higher in a ferrous chloride medium than in an equivalent ferric chloride solution. The presence of CuCl2 systematically raises the AgCl solubility, but increasing ZnCl2 concentrations cause the solubility to decrease slightly to about 1.5 M ZnCl2 and subsequently to increase gradually. The addition of NaCl to the iron chloride media substantially increases the AgCl solubility under all conditions. Although the solubility of AgCI is only a few mg/L in cold water, this increases to over 1 g/L in hot, moderately concentrated chloride media. Silver chloride solubilities at elevated temperatures are sufficiently high that silver solubility limitations should not be a problem in most commercial ferric chloride leaching processes.  相似文献   

20.
The kinetics of suifation of chalcopyrite with/without ferric oxide addition has been studied in the fixed bed for the temperature range 673 to 773 K in the absence of external mass transfer effects such as particle size of ore and flow rate of oxidizing gases such as steam and oxygen. The suifation reaction was observed to be topochemical. The activation energy value of 30.5 kJ/mol was found when no catalytic addition was made. The rate of suifation increases with the addition of ferric oxide. The rate constant values obtained without and with 10 pct Fe2O3 were 5.5 × 103 min?1 and 7.00 × 103 min?1, respectively. The activation energy value for the roasting in the presence of the catalyst was 29.2 kJ/mol under these conditions. Examination of the kinetic data indicates that the reaction occurred on the surface of the mineral particles and proceeded through the reactant and product phase boundary. The sulfated products were also characterized by metallography, scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS), and X-ray diffractometry (XRD) studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号