首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 234 毫秒
1.
Mo—Ni—P柴油加氢精制催化剂的研制   总被引:11,自引:0,他引:11  
采用Y型分子筛改性和共浸法制备了Mo-Ni-P/HUSY-Al2O3柴油加氢精制催化剂,利用模型化合物二苯噻吩,喹啉和萘(甲苯为溶剂)的加氢反应,考察了载体预处理和浸渍方法对催化剂的HDS,HDN和HDAr活性的影响。通过正交试验确定了最佳实验条件和催化剂组分的配比。结果表明,采用26%(NiO MoO3)-P/(15%HUSY 85%γ-Al2O3)催化剂,在340℃,4MPa,3H^-1的条件下,可得到100%脱硫率和脱氮率,以及95.3%芳烃加氢饱和率。提出了二苯并噻吩加氢脱硫,喹啉加氢脱氮和萘加氢饱和的反应历程。二苯并噻吩的加氢脱硫有两条平行的反应路线:氢解脱硫和加氢-氢解脱硫,最终产物为联苯和苯基环已烷。喹啉加氢脱氮的中间产物主要为四氢喹啉,十氢喹啉和丙基苯胺,最终产物为丙基苯和丙基环已烷。萘加氢饱和的中间产物为四氢萘,十氢萘和丁基苯,进一步反应则生成丁基环已烷,并有可能开环生成异癸烷。  相似文献   

2.
 在固定床高压微反装置中考察了喹啉和吲哚对二苯并噻吩(DBT)在NiMoS/γ-Al2O3催化剂上加氢脱硫(HDS)反应活性及反应路径的影响.结果表明,喹啉和吲哚对DBT的加氢脱硫反应具有抑制作用. 少量的喹啉和吲哚即可强烈抑制DBT加氢脱硫反应的加氢路径; 而当含氮化合物加入量高时,才能较为显著地抑制DBT加氢脱硫反应的氢解路径. 在相同的条件下, 喹啉对加氢脱硫反应的抑制能力比吲哚强. 产物分析结果表明, 氮化物对DBT加氢脱硫反应的抑制作用与其分子结构和加氢脱氮反应中间产物的种类紧密相关.  相似文献   

3.
以四硫代钼酸铵为前躯体制备二硫化钼(MoS2)催化剂,并引入Ni金属作为助剂合成Ni-Mo-S催化剂,以二苯并噻吩质量分数为0.8%的十氢萘溶液为模型化合物,考察了这两种催化剂的加氢脱硫性能,同时考察喹啉的存在对于这两种催化剂加氢脱硫反应性能的影响。结果表明:Ni助剂的引入增强了催化剂的加氢脱硫反应活性;喹啉的存在抑制了加氢脱硫反应活性,在MoS2上,喹啉的存在同时抑制了催化剂的预加氢脱硫和直接脱硫两条路径的活性,而在Ni-Mo-S催化剂上,喹啉只抑制了预加氢脱硫路径的活性,而直接脱硫路径的活性反而得到提高;喹啉的存在对于Ni-Mo-S催化剂活性的抑制作用明显小于MoS2,说明Ni助剂的引入有效地提高了硫化钼催化剂的耐氮性能。  相似文献   

4.
以SiO2为载体的磷化钼催化剂上喹啉的加氢脱氮反应   总被引:1,自引:0,他引:1  
通过原位还原方法制备了以SiO2为载体的磷化钼(MoP)催化剂。采用喹啉作为模型化合物,在300~360℃、5.0 MPa和MHSV为21 h^-1的条件下,考察了MoP/SIO2催化剂的加氢脱氮(HDN)反应活性和产物分布。结果表明,MoP/SiO2催化喹啉的HDN反应中。喹啉首先加氢饱和生成十氢喹啉(DHQ),然后再开环并脱氮生成丙基环基烷(PCH)。同时,考察了二苯并噻吩(DBT)对MoP/SiO2催化喹啉的HDN反应活性及反应路径的影响。未加DBT时。MoP/SiO2催化剂表现出较高的HDN活性和加氢能力。C—N键的氢解是HDN反应速率的控制步骤。加入DBT后,即使加入的量很少,喹啉的脱氮率也明显降低。DBT对MoP/SiO2催化喹啉的HDN反应的影响主要体现在对喹啉的加氢反应路径的抑制,说明DBT和喹啉在MoP/SiO2催化剂的加氢活性位上存在着强烈的竞争吸附,此时HDN反应速率的控制步骤由氢解步骤转为加氢步骤。  相似文献   

5.
采用偏钨酸铵 {(NH4 ) 2 W4 O1 3·18H2 O }与磷酸氢二铵 {(NH4 ) 2 HPO4 }溶解、蒸发、焙烧和程序升温还原的方法 ,制备了无负载磷化钨催化剂。利用物相测定 (XRD)和比表面积测定对合成样品进行表征 ,采用程序升温氢还原方法对催化剂前体的加氢还原过程进行考察 ,通过失重率计算出催化剂前体的物质组成为WPO5.5·0 .5H2 O。以制备的磷化钨为活性组分 ,Al2 O3为稀释剂 ,着重考察了空速、反应温度对吡啶加氢脱氮性能的影响。在适宜的反应条件 (空速为 4h- 1 、反应温度为 3 40℃、氢油体积比为 10 0 0、反应压力为 3 .0MPa)下 ,对模型化合物为二苯并噻吩(含 3 0 0 0 μg/g硫 )、喹啉 (含 2 0 0 0 μg/g磷 )和环己烷 (溶剂 )加氢脱硫和加氢脱氮反应活性进行测定 ,结果表明 :无负载磷化钨催化剂有相当的活性 ,脱氮率为 76.5 % ,脱硫率为 60 .3 4%。  相似文献   

6.
研究了4,6-二甲基二苯并噻吩(4,6-DMDBT)在Co-Mo/γ-Al2O3上的加氢脱硫反应产物分布及其可能的反应网络,并通过反应压力和温度对产物分布的影响,揭示了加氢脱硫反应的可能机理.研究发现,4,6-DMDBT在Co-Mo/γ-Al2O3上存在甲基位置转移的异构化反应,而4,6-DMDBT加氢脱硫反应通过直接氢解路径和加氢路径进行,其中加氢路径起主要作用.通过4-甲基二苯并噻吩(4-MDBT),二苯并噻吩(DBT)的对比试验表明,二苯并噻吩类加氢脱硫转化率4,6-DMDBT<4-MDBT<DBT,而反应产物中联苯类与环己基苯类的摩尔分数之比,也存在上述顺序,加之实验发现的4,6-DMDBT部分加氢产物加氢脱硫的高活性,都间接证明二苯并噻吩类硫化物在催化剂表面存在通过硫原子的端连吸附,4,6-DMDBT位于4,6位的两个甲基在加氢脱硫过程存在对"端连吸附"的空间位阻,这是造成4,6-DMDBT转化率低的主要原因.实验研究表明反应压力对4,6-DMDBT加氢脱硫反应中加氢路径的影响很大,而对氢解路径影响不明显;反应温度对4,6-DMDBT加氢脱硫反应中加氢路径和氢解路径都有很大影响,但对氢解路径的影响相对较大.4,6-DMDBT分子中甲基的供电子作用有利于苯环的加氢反应,从而降低了加氢路径反应活化能,却不利于4,6-DMDBT在催化剂表面通过硫原子的端连吸附,因而使氢解路径的反应活化能升高.  相似文献   

7.
合成了一系列不同Ni、W比例的复合金属氧化物,并以此为前躯体制备高金属含量Ni-W催化剂,以萘、喹啉和二苯并噻吩为模型化合物进行了竞争性加氢脱芳烃、加氢脱氮及加氢脱硫反应研究;采用XRD、N2吸脱附、SEM、HRTEM等手段对Ni-W复合氧化物及高金属含量Ni-W催化剂进行了表征。结果表明:Ni-W复合氧化物为一系列具有NiWO4和WO3?0.75H2O晶相的介孔物质,硫化态高金属含量Ni-W催化剂中WS2的堆垛层数为2~6层,片层长度集中在3~10 nm范围内;高金属含量Ni-W催化剂作用下的喹啉及二苯并噻吩转化率均达到90%以上,但萘的转化率较低。  相似文献   

8.
研究了FF-26加氢处理催化剂上喹啉对二苯并噻吩(DBT)和4,6-二甲基二苯并噻吩(4,6-DMDBT)及轻循环油(LCO)中含硫组分加氢脱硫反应的毒化作用。实验结果表明,添加喹啉可同时抑制反应的加氢脱硫(HYD),反应路径和直接脱硫(DDS)反应路径,显著抑制了DBT和4,6-DMDBT的转化;喹啉对DBT加氢脱硫反应产物选择性的影响更多地表现为对HYD产物的抑制,而对4,6-DMDBT不但表现为DDS产物选择性的降低,也表现为HYD路径中加氢中间体选择性的增加。通常情况下,喹啉对含硫物种的转化率影响不大,但反应压力过低时会导致含硫组分转化率的降低;在反应温度310℃、氢分压2.0 MPa、LHSV=2.0 h~(-1)、氢油体积比1 000条件下,当喹啉添加量从2 000μg/L增加至5 000μg/L时,总硫转化率从65.8%降至32.5%。  相似文献   

9.
介绍了用Ni-W系催化剂对喹啉、异喹啉混合原料进行加氢脱氮历程和动力学研究的结果。喹啉加氢脱氮是同时具有并、串联和可逆的复杂反应,除丙基苯的生成为零级反应外,其余各步均为一级反应。异喹啉加氢脱氮是由两步串联进行的一级反应组成。异喹啉加氢脱氮比喹啉容易得多,异喹啉脱氮历程是喹啉系氮化物脱氮较为理想的历程。  相似文献   

10.
用全硅MCM-41担载Ni-Mo双金属活性组分制备了高活性加氢脱硫催化剂,并考察了其对二苯并噻吩(DBT)、4-甲基二苯并噻吩(4-MDBT)、4,6-二甲基二苯并噻吩(4,6-DMDBT)和高硫直馏柴油加氢脱硫反应的活性。结果表明,所研制的催化剂对DBT、4-MDBT、4,6-DMDBT和高硫直馏柴油(w_S=2.83%)均具有很高的加氢脱硫活性。该系列催化剂的最佳Ni/Mo原子比为0.75,高于以γ-Al_2O_3作载体的传统Ni-Mo催化剂的最佳原子比。在DBT的加氢脱硫反应中,双组分催化剂低温下(<300℃)生成环己烷基苯(CHB)的选择性高于联苯(BP),与MoO_3/MCM-41的产物分布不同。随着温度的升高,CHB的选择性显著下降,而生成苯和环己烷的选择性显著提高,说明裂解产物主要由CHB分解而得。由TPR谱图可知,Mo和Ni活性组分在表面存在相互作用,从而使得氢耗特征温度发生变化。在Ni/Mo原子比为0.75时,TPR谱上出现4个特征峰,说明Mo和Ni的配伍性和协同作用对于提高催化剂活性很重要。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号