首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The processes of coagulation and aerodynamic fragmentation of liquid particles of aluminum oxide in an accelerating gas flow in the Laval nozzle are analyzed. A formula obtained by an approximate analytical solution of equations of a two-phase flow is proposed to calculate the characteristic particle diameter at the nozzle exit. The limiting particle diameter in the nozzle throat calculated theoretically is close to the mean-mass diameter obtained by numerical simulation of polydisperse two-phase flows with particle coagulation and fragmentation. The formula proposed is in agreement with Hermsen's correlation dependences and is confirmed by numerous published data on measurement of the mean-mass diameter of aluminum-oxide particles in exhaust plumes of small-, medium-, and large-scale solid rocket motors. The formula contains physical parameters whose values are readily calculated and prescribed. The formula is tested by all the parameters that enter into it. Based on a comparison of theoretical calculations and numerous experimental data, the formula is recommended for prediction of the size of aluminum-oxide particles in exhaust plumes of various types of solid rocket motors. Key words: rocket motor, two-phase flow, aluminum oxide, fragmentation of drops.  相似文献   

2.
The aim of this paper is to define the conditions controlling the fragmentation process within the atomization of a suspension. Correlations for the droplet diameter of a suspension spray generated by a twin-fluid nozzle have been derived. Two separate regimes in suspension atomization have been identified with respect to the solid particle size. The atomized droplets from suspensions containing relatively fine solid particles are suspension droplets (containing liquid and solid particles). In this case a correlation for the drop size distribution in the spray of a twin-fluid nozzle has been deduced. Droplet size measurements in the suspension spray with varying solid particle sizes showed that when the suspended solid particle size exceeds a critical value, solid particles and liquid will be more and more separated. This effect is indicated by a bimodal size distribution in the suspension spray. It is shown that complete solid-liquid separation in the suspension spray may be achieved, where the pure liquid drops are significantly smaller than the separated solid particles. The critical process conditions where the solid-liquid separation process is found will be derived. Depending on the operating conditions of the atomizer, the resulting pure liquid droplet size is equal or less than the hydraulic diameter.  相似文献   

3.
Effects of particle mass deposited in the cyclone and particle electrostatic charge on the particle penetration of the commonly used 10 mm nylon cyclone have been experimentally investigated in this study. The solid particle penetration of the cyclone has been found to decrease with an increase in particle mass deposited in the cyclone. This effect is most significant for particles near the cutoff aerodynamic diameter and when the deposited particle mass is low. The penetration of the cyclone has also been found to be influenced by particle electrostatic charge. This effect is also significant for particles near the cutoff aerodynamic diameter and when the number of elementary units of charge is greater than several thousands. To overcome these problems, a new cyclone made of conductive aluminum and with inner diameter nearly twice that of the 10 mm nylon cyclone has been designed and tested. Experimental results indicate that effects of both deposited particle mass as well as electrostatic charge on the penetration are reduced substantially in this cyclone.  相似文献   

4.
A novel instrument has been developed for generating highly monodisperse aerosol particles with a geometrical standard deviation of 1.05 or less. This aerosol generator applies a periodic mechanical excitation to a micro-liquid jet obtained by aerodynamic flow-focusing. The jet diameter and its fastest growth wavelength have been optimized as a function of the flow-focusing pressure drop and the liquid flow rate. The monodisperse aerosol generated by this instrument is also charge neutralized with bipolar ions produced by a non-radioactive, corona discharge device. Monodisperse droplet generation in the 15- to 72-μm diameter range from a single 100-micron nozzle has been demonstrated. Both liquid and solid monodisperse particles can be generated from 0.7- to 15-μm diameter by varying solution concentration, liquid flow rate, and excitation frequency. The calculated monodisperse particle diameter agrees well with independent measurements. The operation of this new monodisperse aerosol generator is stable and reliable without nozzle clogging, typical of other aerosol generators at the lower end of the operating particle size ranges.

Copyright © 2016 American Association for Aerosol Research  相似文献   


5.
The AIST-inkjet aerosol generator (IAG) can generate highly monodisperse solid or liquid aerosol particles in the particle diameter range from 0.3 to 20 μm at precisely known particle generation rates. The device has been developed for evaluating the counting efficiencies of optical and condensation particle counters. Particle generation efficiency of the IAG is defined as the number of aerosol particles generated by one voltage pulse sent to an inkjet head. The 95% confidence interval of the efficiency were 0.998 ± 0.006 within the 0.4 to 10 μm particle diameter range. The efficiencies remained close to unity when the droplet generation rates were within 20–500 s?1 and 100–900 s?1 using ultrapure-water and isopropyl alcohol (IPA) as the solvent of the inkjet solution, respectively. The operating aerosol flowrate range of the IAG is currently 0.5 and 1.0 L/min. The coefficients of variations (C.V.) of the size distributions were 2 to 3% indicating the generated particles were highly monodisperse. The generated particle sizes were defined as the volume equivalent diameter, Dve. The uncertainty analysis on the factors affecting Dve indicated that 95% confidence interval of the Dve is expected to be ±5%. The uncertainty of Dve was entirely caused by the uncertainty of the average mass of a droplet. The reproducibility of particle sizes within 0.5 to 10 μm was evaluated using an aerodynamic particle sizer. The C.V. of the measured particle sizes were less than 6% and 4% when NaCl particles and ionic liquid droplets were generated, respectively.

Copyright 2014 American Association for Aerosol Research  相似文献   

6.
为了实现对钢铁行业微细颗粒的超低排放,提出磁性纤维提高对 Fe基细颗粒物的捕集。 基于计算流体力学?离散相模型CFD-DPM对比研究了传统纤维、磁性纤维直径对Fe基细颗粒捕集效率以及过滤阻力的影响。结果表明:当风速为0.10 m/s时,对于直径为35~45 μm范围的纤维,直径的增大能够明显增加过滤阻力。对于粒径小于2.5 μm的颗粒,磁性纤维直径的增加对捕集效率提高的影响相对较小,当颗粒粒径大于2.5 μm时,增大纤维直径能够显著提高捕集效率。风速处于0.01~0.05 m/s范围时,增大纤维直径对提高磁性纤维捕集效率作用明显;当风速为0.08~0.10 m/s时,纤维直径变化对捕集效率的影响较小。磁性纤维质量因子随纤维直径增大而下降。  相似文献   

7.
利用高速摄像仪对二维喷嘴内稠密气固射流稳定性进行了实验研究,考察了颗粒粒径、料仓压力以及喷嘴收缩角等因素对射流流动模式及稳定性的影响。结果表明:对于颗粒粒径为78μm的气固射流,随着料仓压力的增大,射流出口速度增大,射流固含率降低,在料仓压力≥0.03MPa、射流速度≥4.82m/s、射流固含率≤0.168时,喷嘴内稠密气固射流出现气泡型的不稳定流动模式;随着颗粒粒径的增大,气固射流固含率降低,喷嘴内稠密气固射流从气泡模式转变为颗粒团不稳定流动模式;改变喷嘴收缩角对射流不稳定模式影响不大。利用微型压力传感器对喷嘴直管不同位置压力进行测量,结果表明压力脉动主要是由于气固射流中气泡及颗粒团的产生及演变导致的。研究表明,随着料仓压力增大,颗粒在喷嘴内向下运动过程中压降增加,渗透进颗粒流的气体分率增加,将导致喷嘴内气固相互作用增强,进而引起气固射流不稳定。  相似文献   

8.
A quartz crystal microbalance (QCM) based instrument has been developed for real-time aerosol mass distribution measurement. It includes two key components: a six-stage QCM micro-orifice cascade impactor and a novel relative humidity (RH) conditioner. This instrument operates at a flow rate of 10 L·min?1 and measures the mass of the collected particles in six aerodynamic diameter channels between 45 nm and 2.5 μm. The RH conditioner ensures that the aerosol particles are collected at an RH between 40% and 65%, which is critical for eliminating particle bounce and for ensuring optimal particle coupling with the QCM. The nozzles of the impactors are clustered in the center of the nozzle plates. Therefore, particles are deposited on the central electrode of the QCM, where the mass calculated from first principles (i.e., Sauerbrey equation) agrees with the actual collected mass. The QCM response is linear up to around 130 μg for solid particles and up to around 2 μg for liquid particles. The collection efficiency curves of the QCM impactor stages were measured experimentally with monodisperse aerosols, and the results agree with the predictions of established impactor theory. This QCM-based instrument has also been tested with ambient aerosols with varying temperature and relative humidity. The aerosol distributions measured by this new instrument are in good agreement with simultaneous independent measurements carried out with a wide-range particle spectrometer (MSP Model 1000XP WPS).

Copyright © 2016 American Association for Aerosol Research  相似文献   

9.
The aerodynamic particle sizer (APS) measures the size distributions of particles with aerodynamic diameter between 0.5 and in real time. To provide accurate size distributions, the APS must measure both particle size and concentration correctly. The objective of this study was to characterize the counting efficiency of the APS as a function of particle size (0.8–), particle type (liquid or solid), and APS model number (3310 vs. 3321). For solid particles, counting efficiencies ranged between 85% and 99%. For liquid droplets, counting efficiencies progressively declined from 75% at 0.8-μm drops to 25% for 10-μm drops. Fluorometric wash tests indicated that transmission losses occur when larger droplets impact on the instrument's inner nozzle. However, transmission losses did not account entirely for the reduced droplet counting efficiencies, indicating that additional losses may have occurred downstream of the inner nozzle. Between instrument comparisons revealed that although multiple APSs report similar number concentrations, small deviations in particle sizing can produce substantial errors when number concentrations are converted to mass concentrations.  相似文献   

10.
As a sequel to our previous effort on the modeling of particle motion through a single lens or nozzle, flows of gas–particle suspensions through an integrated aerodynamic-lens–nozzle inlet have been investigated numerically. It is found that the inlet transmission efficiency (ηt) is unity for particles of intermediate diameters (Dp ~ 30–500 nm). The transmission efficiency gradually diminishes to ~40% for large particles (Dp > 2500 nm) because of impact losses on the surface of the first lens. There is a catastrophic reduction of ηt to almost zero for very small particles (Dp ≤ 15 nm) because these particles faithfully follow the final gas expansion. We found that, for very small particles, particle transmission is mainly controlled by nozzle geometry and operating conditions. A lower upstream pressure or a small inlet can be used to improve transmission of very small particles, but at the expense of sampling rate, or vice versa. Brownian motion exacerbates the catastrophic reduction in ηt for small particles; we found that the overall particle transmission efficiency can be roughly calculated as the product of the aerodynamic and the purely Brownian efficiencies. For particles of intermediate diameters, Brownian motion is irrelevant, and the modeling results show that the transmission efficiency is mainly controlled by the lenses. Results for an isolated lens or nozzle are used to provide guidance for the design of alternative inlets. Several examples are given, in which it is shown that one can configure the inlet to preferentially sample large particles (with ηt > 50% for Dp = 50–2000 nm) or ultrafine particles (with ηt > 50% for Dp = 20–1000 nm). Some of the results have been compared with experimental data, and reasonable agreement has been demonstrated.  相似文献   

11.
A serial method is described for estimating the particle effective density and dynamic shape factor of particles, i.e., diesel exhaust particles (DEPs). For this purpose, we designed a single stage low-pressure impactor with a cutoff diameter of 130 nm. The collection efficiency curve of the impactor was obtained using mobility-classified sodium chloride (NaCl) particles as a function of the mobility diameter. Then by converting the mobility diameter of the NaCl particle into the aerodynamic equivalent diameter, the efficiency curve can be expressed as a function of the aerodynamic diameter. We also obtained the efficiency curve numerically by using a commercial computational fluid dynamics software package. After confirming the design and performance of the impactor (experimentally 135 nm and numerically 137 nm of cutoff diameter), we measured the currents carried by mobility-classified DEPs downstream and upstream of the impactor so that the collection efficiency value for DEP could be obtained at each mobility diameter of DEPs. By making this value equal to that of the efficiency curve, the relationship between the mobility diameter of DEPs and the aerodynamic diameter was obtained; this enabled us to determine the effective density and dynamic shape factor of DEPs. The effective density decreased from 1.06 to 0.51 g/cm3 and the dynamic shape factor increased from 1.28 to 1.64 as the particle size increased from 60 to 105 nm, regardless of the engine type or operating conditions.

Copyright 2015 American Association for Aerosol Research  相似文献   

12.
The present research investigates and optimizes the aerodynamic performance of a newly designed compact size three stage mobile gas-solid separator. This separator is designed to collect solid particles with different characteristics at a minimum pressure drop. The minimum particle diameter to be completely collected is 1 μm at solid loading 20 g/m3. The first stage of the separator is a settling chamber which is designed to collect coarse particles (particles down to particle diameter 100 μm). The second stage is a cyclone separator where medium to fine particles (particles down to particle diameter 15 μm) are to be collected. Particles escaping the cyclone separator are collected in the third stage which is a bag filter.A separator conceptual aerodynamic design is first performed to obtain overall separator dimensions. CFD simulation is used in order to optimize the separator aerodynamic performance and reduce the separator size. The separator is then constructed and experimentally investigated. Comparison between CFD results at design point and measured separator total pressure drop shows good agreement.  相似文献   

13.
Phospholipid particles for pharmaceutical applications were prepared by spray-drying processing and characterized for their structural, thermodynamic and physical properties. The lipid particles were spherical and potentially suitable for pulmonary applications (aerodynamic diameter less than 5 μm), for tablet preparations of orally administered drugs or as proliposomes in liquid formulations. The operational conditions, such as nozzle diameter, lipid concentration, flow rate and temperature of the feed solution, as well as the concentration of mannitol, the core material, were found to affect the particle properties, thus allowing them to be modified through the processing conditions. When mannitol was incorporated into formulations containing 20 or 45 mM lipid, at a feed flow rate of 3 ml/min, the resulting structures were more amorphous. More crystalline structures were obtained when the feed solution temperature and the nozzle diameter were increased from 25 to 60 °C and from 0.5 to 1 mm, respectively. The physical and chemical stability of the particles was preserved when they were stored under refrigeration, as shown by the water activity measurements and differential scanning calorimetry (DSC). These results show the potential of spray-dried particles for drug delivery applications.  相似文献   

14.
三相环流反应器流体力学行为   总被引:7,自引:3,他引:4       下载免费PDF全文
气升式三相环流反应器综合了鼓泡塔和机械搅拌釜的优良性能,具有结构简单、无机械传动部件、易密封、造价低、容易实现工业放大等优点,在石油、化工、电化学和生物化工等领域得到了广泛应用.随着能源形势的日趋紧张,环流反应器在液相法合成甲醇、浆态床一步法合成二甲醚、煤液化等过程中的应用得到许多研究人员的重视,并取得了重要的研究进展.由于目前对其内部流动行为尚缺乏系统的认识,进行工业设计和操作过程中仍显理论指导不足  相似文献   

15.
设计了实现液固外循环流化床中颗粒正常循环的关键部件——喷嘴,利用CCD图像采集分析系统,获得了其换热管束内固体颗粒的分布情况,考察了液体流量、口径比、喷嘴安装位置、颗粒直径、颗粒初始加入量以及液体黏度对液固外循环流化床换热器管束内含固体积分数的影响。结果表明:口径比及喷嘴安装位置对提高管束内的含固体积分数都存在一个最佳值,颗粒直径、颗粒初始加入量以及液体黏度对管束内含固体积分数也具有较大的影响,同时还通过对实验数据的综合分析,得到了喷嘴在最佳安装位置下液固外循环流化床内含固体积分数的经验关联式。  相似文献   

16.

This study has investigated the influence of impaction plate diameter ( Dc ) and particle density on the particle collection efficiency of single round-nozzle inertial impactors numerically assuming incompressible flow. The study shows that computed St 50 values range from 0.473 to 0.485, which are nearly independent of W/Dc ( W is the nozzle diameter) for the nozzle Reynolds number, Re > 1500, and when W/Dc < 0.32. St 50 values agree quite well with the theoretical values of Rader and Marple (1985), 0.49, and Marple and Liu (1974), 0.477. For a smaller impactor plate diameter such that W/D c > 0.32, St 50 will increase slightly. It increases from 0.483 to 0.507 (Re = 3000) or from 0.479 to 0.495 (Re = 1500) when W/Dc is increased from 0.32 to 0.48. When the nozzle Reynolds number is smaller than 1500, the influence of W/Dc on St 50 is found to be much more pronounced. The effect of particle density on the collection efficiency has also been investigated. When particle gravity is included, the results show that St 50 is not affected by particle density ranging from 0.5 to 10 g/cm 3 , although the particle collection efficiency increases slightly with increasing particle density at high ends of the collection efficiency curves at high nozzle Reynolds number due to an ultra-Stokesian effect. The particle interception effect does not affect the collection efficiency curves at high Reynolds numbers at all, and the effect is negligibly small at low Reynolds numbers.  相似文献   

17.
An anisokinetic shrouded nozzle system was designed for sampling particles at a constant low flow rate from a ventilation duct to an aerodynamic particle sizer (APS). Shrouded anisokinetic nozzles are a means for sampling from a moving airstream with higher particle transmission than with unshrouded isokinetic nozzles. This shrouded nozzle sampling system was evaluated in an experimental ventilation duct system. Aspiration and transport efficiency measurements were made for five particle sizes in the range 1–13 μm at each of three duct air speeds in the range 2.2–8.8 m/s. Under these conditions, the shrouded nozzle system showed improved performance compared to buttonhook isokinetic nozzles, especially for larger particles and higher air speeds. Measured transmission efficiencies through the shrouded nozzle sampling system were generally higher and more reliably predictable than those through buttonhook isokinetic nozzles. Model predictions of transport and aspiration efficiencies of the shrouded nozzle system showed good agreement with measurements over the entire range of experimental conditions. The shrouded nozzle sampling system could be used to measure concentrations in ventilation ducts with an APS for particles in the diameter range 1–13 μm.

Copyright 2014 American Association for Aerosol Research  相似文献   


18.
陈明功  黄晟  陆守香 《化工学报》2003,54(11):1530-1534
研究了影响液-固混合悬浊液压力雾化各因素间的函数关系.液-固悬浊液的雾化由振动波干扰不稳定的液膜以及固体微粒惯性力等因素引起,通过理论分析建立相应的数学模型,找出了压力、固体微粒直径、固体微粒密度以及悬浊液中固体微粒质量分数与雾滴直径的关系.模型分析表明,压力、固体微粒密度对雾滴直径的影响具有非单调性关系,即雾滴直径随它们的增加先减少再增大;而雾滴直径随固体微粒的粒径、固体质量分数的增加而增大.  相似文献   

19.
研究了影响液 固混合悬浊液压力雾化各因素间的函数关系 .液 固悬浊液的雾化由振动波干扰不稳定的液膜以及固体微粒惯性力等因素引起 ,通过理论分析建立相应的数学模型 ,找出了压力、固体微粒直径、固体微粒密度以及悬浊液中固体微粒质量分数与雾滴直径的关系 .模型分析表明 ,压力、固体微粒密度对雾滴直径的影响具有非单调性关系 ,即雾滴直径随它们的增加先减少再增大 ;而雾滴直径随固体微粒的粒径、固体质量分数的增加而增大  相似文献   

20.
Accurate characterization of the physicochemical properties of aerosols generated for inhalation toxicology studies is essential for obtaining meaningful results. Great emphasis must also be placed on characterizing particle properties of materials as administered in inhalation studies. Thus, research is needed to identify a suite of techniques capable of characterizing the multiple particle properties (i.e., size, mass, surface area, number) of a material that may influence toxicity. The purpose of this study was to characterize the morphology and investigate the size distribution of a model toxicant, beryllium. Beryllium metal, oxides, and alloy particles were aerodynamically size-separated using an aerosol cyclone, imaged dry using scanning electron microscopy (SEM), then characterized using phase contrast microscopy (PCM), a liquid suspension particle counter (LPC), and computer-controlled SEM (CCSEM). Beryllium metal powder was compact with smaller sub-micrometer size particles attached to the surface of larger particles, whereas the beryllium oxides and alloy particles were clusters of primary particles. As expected, the geometric mean (GM) diameter of metal powder determined using PCM decreased with aerodynamic size, but when suspended in liquid for LPC or CCSEM analysis, the GM diameter decreased by a factor of two (p < 0.001). This observation suggested that the smaller submicrometer size particles attached to the surface of larger particles and/or particle agglomerates detach in liquid, thereby shifting the particle size distribution downward. The GM diameters of the oxide materials were similar regardless of sizing technique, but observed differences were generally significant (p < 0.001). For oxides, aerodynamic cluster size will dictate deposition in the lung, but primary particle size may influence biological activity. The GM diameter of alloy particles determined using PCM became smaller with decreasing aerodynamic size fraction; however, when suspended in liquid for CCSEM and LPC analyses, GM particle size decreased by a factor of two (p < 0.001) suggesting that alloy particles detach in liquid. Detachment of particles in liquid could have significance for the expected versus actual size (and number) distribution of aerosol delivered to an exposure subject. Thus, a suite of complimentary analytical techniques may be necessary for estimating size distribution. Consideration should be given to thoroughly understanding the influence of any liquid vehicle which may alter the expected aerosol size distribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号