首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
北疆及邻区石炭-二叠纪花岗岩时空分布特征及其构造意义   总被引:19,自引:0,他引:19  
北疆及邻区发育大量的花岗岩,其中石炭-二叠纪花岗岩较为突出。本文总结了该期花岗岩的时空分布特征。北疆及邻区不同构造单元石炭-二叠纪花岗岩特征不同,形成时代峰期也不一致。在阿尔泰,该期花岗岩主要集中在早二叠世(289~266Ma),晚石炭世出现一个明显的岩浆宁静期;西准噶尔可以分为早石炭世(340~320Ma)和晚石炭世—早二叠世(310~290Ma)两期,后一期较强,铝质A型花岗岩分布广泛是该地区的一个重要特征,形成时代集中在300Ma左右;东准噶尔地区石炭-二叠纪花岗岩多沿断裂带展布,岩浆活动从晚石炭世一直延续到早二叠世(320~270Ma),该地区最大的特点是发育多条碱性(A型)花岗岩带,在晚石炭世—早二叠世连续产出。西天山大致可以分为3期:早石炭世(355~345Ma)、早石炭世晚期—晚石炭世(335~305Ma)和二叠纪(300~255Ma)。早石炭世花岗岩主要集中在北天山,早二叠世花岗岩浆活动最为强烈,其中的碱性(A型)花岗岩不仅在南天山呈带状大面积分布,在北天山也有发育;东天山—北山是区内石炭-二叠纪花岗岩最为发育的地区,岩体数量多,分布面积广,锆石年龄主要集中在335~310Ma和300~270Ma,相对来说来东天山石炭纪花岗岩较多,北山二叠纪花岗岩较多。总体而言,北疆及邻区石炭-二叠纪花岗岩时代主要集中在晚石炭世—早二叠世,特别是早二叠世,整体展现出同步性,这个时期碱性岩最发育,可能揭示了不同构造背景下的伸展特点。这是整个中亚造山带及邻区大量的酸性和基性-超基性岩浆活动及暗示的伸展环境的一个缩影。  相似文献   

2.
该区花岗质岩石主要岩性为石英闪长岩、英云闪长岩、花岗闪长岩、二长花岗岩和正长花岗岩。通过对石英闪长岩锆石SHRIMP U-Pb定年[1],所获得年龄为(313±5)Ma~(323±4)Ma,属于晚石炭世侵入体;前进场和达青二长花岗岩各单元岩体均侵入了该区早二叠世寿山沟组海陆交互相碎屑沉积岩,侵入接触关系明确,红柱石角岩发育。测得前进场岩体和达青岩体锆石SHRIMP U-Pb年龄分别为(280.8±3.6)Ma和(281.5±0.5)Ma,说明岩体形成于早二叠世晚期;乌兰陶勒盖正长花岗岩岩体获得了259Ma、羊角林高勒二长花岗岩为246~216Ma的U-Pb同位素年龄,说明在晚二叠世—三叠世又有一次侵入高峰。石炭—二叠纪裂谷发育时期,部分跨入三叠纪,先后有3次侵入高峰,即晚石炭世的石英闪长岩、早二叠世的英云闪长岩—二长花岗岩、晚二叠世—三叠纪的二长花岗岩-正长花岗岩。  相似文献   

3.
兴蒙造山带中段二连-东乌旗地区发育一条晚古生代碱性花岗岩带,代表了碰撞后伸展背景,前人研究多认为其形成于早二叠世中晚期,本次在苏尼特左旗洪格尔地区新识别出晚石炭世(302±1 Ma)碱性花岗岩,与区域上其它晚石炭世碱性花岗岩共同构成了晚石炭世碱性花岗岩带,表明区域上存在晚石炭世(301~303 Ma)和早二叠世(272~290 Ma)两期碱性花岗岩岩浆活动。  相似文献   

4.
蒙古西部呼伦陶勒盖地区花岗岩类的初步研究   总被引:5,自引:1,他引:4  
靠近中蒙边界的内蒙古西部呼伦陶勒盖地区的中元古界和石炭系中产出数个花岗岩体,其中以英格特-巴格毛道岩体的出露面积最大,岩性变化显著,包括石英闪长岩、花岗闪长岩和花岗岩,含有围岩的残留体,并被年轻的花岗岩和伟晶岩等侵入.以前的资料显示该岩体是晚古生代形成的,而其他红色的花岗岩和钾长花岗岩小岩体(如库楚乌拉和一连)是中生代形成的.SHRIMP锆石UPb定年结果显示,英格特-巴格毛德岩体的年龄为313±5 Ma,相当于晚石炭世.原定为中生代的库楚乌拉和一连两个红色花岗岩体的年龄分别为277±2 Ma和278±4 Ma,相当于早二叠世,而侵入于英格特巴格毛道岩体中的石英二长岩的年龄为130±2 Ma,相当于早白垩世.晚石炭世花岗岩具有IA型过渡的元素地球化学特征,而早二叠世花岗岩具有A型花岗岩的特征,属于铝质A型花岗岩.晚古生代花岗岩的共同特征是均以具正的εNd(t)值(0.90~3.43)为特征,具有新生地壳的性质,是内蒙古西部地区陆壳生长的标志.而早白垩世石英二长岩的εNd(t)值为-8.71,指示岩浆起源可能以壳源物质为主,有地幔物质参与.  相似文献   

5.
西准噶尔晚古生代岩浆活动和构造背景   总被引:18,自引:7,他引:11  
高睿  肖龙  王国灿  贺新星  杨刚  鄢圣武 《岩石学报》2013,29(10):3413-3434
西准噶尔作为中亚造山带的一部分,吸引了大量学者的关注。蛇绿混杂岩带、花岗岩、中基性岩墙在本地区广泛出现,表明西准噶尔晚古生代构造演化极为复杂。但是在许多方面仍存在很多争议,例如西准噶尔蛇绿混杂岩带的形成时代、岩石组合和岩石成因;I型和A型花岗岩的岩石成因,构造背景和热机制;中基性-酸性岩墙群的年代学、岩石成因、构造背景和古应力场;西准噶尔晚古生代年代学格架和构造背景;西准噶尔显生宙地壳增生;西准噶尔基底特征和西准噶尔晚古生代构造演化等。笔者通过搜集前人的资料和数据,对西准噶尔区域发育的蛇绿混杂岩带、地层、古地理环境、花岗岩体和中基性岩墙群的总结,结合项目组野外与室内数据的研究,得到以下认识:(1)达尔布特和克拉玛依蛇绿混杂岩的形成环境为与俯冲相关的弧后盆地,源区来自含尖晶石二辉橄榄岩高程度部分熔融作用;(2)早石炭世花岗岩形成于俯冲环境,晚石炭世-早二叠世花岗岩形成于后碰撞环境,中二叠世花岗岩形成于板内环境;(3)I型花岗岩的成因与俯冲密切相关,而A型花岗岩和中基性岩墙产于后碰撞环境下;(4)A型花岗岩是下地壳受地幔底侵发生部分熔融并高度分离结晶的产物,中基性岩墙群普遍具有埃达克质岩的地球化学特点,可能产于受流体(或熔体)交代的残余洋壳板片的部分熔融;(5)中基性岩墙群稍晚于寄主岩体而形成,但两者均形成于后碰撞构造背景。在晚石炭世-早二叠世,西准噶尔处于近南北向的拉张应力体系;(6)西准噶尔在泥盆纪为洋盆体系;早石炭世,俯冲-碰撞过程结束;晚石炭世-早二叠世属于后碰撞环境;中晚二叠世处于板内环境。  相似文献   

6.
内蒙古东乌珠穆沁旗北部的查干敖包岩体可分解为灰黄色细粒花岗岩单元和灰黄色中细粒似斑状含二云母花岗岩单元。前者锆石U-Pb加权平均年龄为(306.4±2)Ma,为晚石炭世岩浆活动产物,后者锆石U-Pb加权平均年龄为(278.3±2)Ma,为早二叠世岩浆活动产物。两期花岗岩具有相似的地球化学特征,主量元素均具有富Si,贫Ti、Mg、Ca,且有较高的碱/铝(NK/A)比值等特征;均表现出明显的负Eu异常;微量元素富集Rb、Th、U、K,弱富集P、Zr及Hf,强烈亏损Ba、Sr及Ti。通过分析讨论,认为晚石炭世晚期细粒花岗岩单元和早二叠世中细粒似斑状花岗岩单元的成因类型均为I-S过渡型钙碱性花岗岩。岩石化学、岩体产状、分布特点和源岩特征都表明,查干敖包岩体晚石炭世晚期和早二叠世花岗岩构造背景环境一致,均为晚古生代中亚造山大地构造背景下碰撞后转换期构造—岩浆事件产物。  相似文献   

7.
靠近中蒙边界的内蒙古西部呼伦陶勒盖地区的中元古界和石炭系中产出数个花岗岩体,其中以英格特-巴格毛道岩体的出露面积最大,岩性变化显著,包括石英闪长岩、花岗闪长岩和花岗岩,含有围岩的残留体,并被年轻的花岗岩和伟晶岩等侵入。以前的资料显示该岩体是晚古生代形成的,而其他红色的花岗岩和钾长花岗岩小岩体(如库楚乌拉和一连)是中生代形成的。SHRIMP锆石U-Pb定年结果显示,英格特-巴格毛德岩体的年龄为313±5Ma,相当于晚石炭世。原定为中生代的库楚乌拉和一连两个红色花岗岩体的年龄分别为277±2Ma和278±4Ma,相当于早二叠世,而侵入于英格特-巴格毛道岩体中的石英二长岩的年龄为130±2Ma,相当于早白垩世。晚石炭世花岗岩具有I-A型过渡的元素地球化学特征,而早二叠世花岗岩具有A型花岗岩的特征,属于铝质A型花岗岩。晚古生代花岗岩的共同特征是均以具正的εNd(t)值(0.90~3.43)为特征,具有新生地壳的性质,是内蒙古西部地区陆壳生长的标志。而早白垩世石英二长岩的εNd(t)值为-8.71,指示岩浆起源可能以壳源物质为主,有地幔物质参与。  相似文献   

8.
张家瑞 《甘肃地质》2017,26(1):32-39
本文对清水泉复式杂岩体进行SHRIMP锆石U-Pb测年,获得二长花岗岩形成时代为314.4±4.7 Ma,含黑云母花岗岩形成时代为311.7±4.1 Ma,英云闪长岩形成时代为314.0±4.0 Ma,加之前人在该地区花岗闪长岩中获得Rb-Sr全岩等时线年龄(277.71±13.5 Ma),限定清水泉复式杂岩体的主要侵位时代为晚石炭世至早二叠世,且至少存在两期岩浆;清水泉复式杂岩体微量元素与稀土元素特征表明岩体具有地壳重熔型花岗岩特征,为I型与A型过渡岩浆,形成于活动陆缘的后造山/火山弧环境,从而揭示在晚石炭世时,古红石山洋消减碰撞,之后进入后造山阶段。  相似文献   

9.
黑龙江多宝山古生代海盆闭合的岩石学证据   总被引:2,自引:0,他引:2  
综合研究黑龙江多宝山地区古生代沉积地层、生物化石,通过分析侵入岩岩石地球化学及其锆石U--Pb 同位素测年资料,表明该地区早奥陶世至晚泥盆世早期为海相沉积地层,晚泥盆世晚期为海陆交互相沉积地层,早石炭世为陆相河湖沉积地层。多宝山海盆东南侧出露一套年龄为( 300 ± 3 ~ 357 ± 4) Ma 的花岗岩,其中正长、二长花岗质糜棱岩为后造山花岗岩,碱长花岗岩为造山后A 型花岗岩。表明多宝山海盆于晚泥盆世开始闭合,至早石炭世为陆相河湖沉积,晚石炭世-早二叠世为抬升剥蚀阶段。表现为多宝山地区于早石炭世开始造山,晚石炭世晚期或延至早二叠世发生造山后伸展作用。  相似文献   

10.
内蒙古阿拉善左旗巴音诺尔公花岗岩体TIMS锆石U-Pb年龄   总被引:1,自引:1,他引:0  
内蒙古自治区阿拉善东南部的巴音诺尔公花岗岩体,地处华北陆块西北缘,霍尔森-查干楚鲁构造带以南的雅布赖-巴音诺尔公构造带内。岩体整体上受NEE向构造控制,主要由中-细粒黑云母花岗岩和中-粗粒似斑状黑云母花岗岩2种岩石类型组成。采用TIMS锆石U-Pb定年法,测得巴音诺尔公岩体不同位置中-细粒黑云母花岗岩和中-粗粒似斑状黑云母花岗岩样品年龄分别为304.7±2.8Ma和289.0±3.8Ma,属于晚石炭世—早二叠世。结合前人资料,提出巴音诺尔公岩体至少存在2期岩浆活动,分别为晚石炭世(304Ma)和早二叠世(289~272Ma)。  相似文献   

11.
南秦岭勉略带北光头山花岗岩体群的成因及其构造意义   总被引:31,自引:15,他引:31  
南秦岭勉略带北部花岗岩体从闪长岩到花岗闪长岩和花岗岩变化,反映了钙碱性岩岩石组合特征,矿物组成以长石、石英、黑云母和少量角闪石为主,副矿物有锆石、磷灰石、磁铁矿和榍石,岩石化学上它们相对高K、Sr,Zr/Y比值较高,富集LEE和LILE,贫化HFSE,与后碰撞富钾钙碱性I型花岗岩特征一致。此外,它们明显亏损Nb、Ta,低Y、Yb和有较高的 LaN/YbN和Sr/Y比值,多数岩体发育淬冷岩浆结构的暗色闪长质微粒包体,包体与寄主花岗岩的稀土及微量元素存在明显差异,证明它们是地壳增厚背景下,可能由下部地壳拆沉作用导致的分别来自幔源和下部地壳熔融的二元岩浆混合演化的产物。个别高分异岩体的Fetot/Mg比值高、明显亏损Sr、Ba、Ti、P,呈现了向强分异A型花岗岩过渡的后碰撞富钾过铝偏碱性花岗岩特征。因此,结合西部岩体形成年代早于东部岩体分析,西部形成时代较早偏中基性的含有大量闪长质微粒包体的岩体代表了早期下部地壳拆沉作用的发生,东部形成较晚分异程度高的高钾钙碱性Ⅰ型花岗岩体的出现指示了南、北两大陆块碰撞汇聚后向伸展的转折,而更晚期高度分异的姜家坪富钾花岗岩体的出现则表明秦岭造山带已进入主碰撞结束期的伸展拉张演化阶段,并预示了新的板内演化期的到来。  相似文献   

12.
内蒙古浩尧尔忽洞金矿位于华北地台北缘西段中元古代白云鄂博台缘凹陷带西部,矿区内有大面积花岗质岩体和岩脉出露,其岩性主要包括石英二长闪长岩、二长花岗岩和碱长花岗岩。通过岩相学特征和岩石地球化学特征分析,结合区域上同类型岩体的侵入时代,认为浩尧尔忽洞岩体形成于华北板块与西伯利亚板块同碰撞-后碰撞环境。其中二长花岗岩形成于同碰撞环境,该环境下由于板片持续俯冲,引起俯冲板片及地幔楔发生熔融,其上侵带来的热量致使下地壳物质部分熔融而形成该类型岩石的母岩浆;石英二长闪长岩形成于碰撞后隆起环境,是加厚下地壳熔融的产物;碱长花岗岩属于晚造山期A型花岗岩系列,该阶段地幔玄武质岩浆底侵,导致下地壳物质熔融,部分与其发生混染。结合浩尧尔忽洞金矿的成矿年龄、成矿流体特征及赋矿岩石有机地球化学特征,认为岩体的侵位提供了矿床形成必不可少的热量及部分成矿流体来源。  相似文献   

13.
东准噶尔卡拉麦里蛇绿岩带南侧分布有大量的石炭纪侵入体,主要出露于五彩城、滴水泉一带及野马站地区。通过对卡拉麦里断裂以南侵入体岩石类型、锆石年代学、地球化学的综合分析,划分出早石炭世后碰撞I型花岗岩类及晚石炭世陆内双峰式侵入岩(碱长花岗岩+角闪辉长岩)。结合断裂以北黄羊山、老鸦泉岩体新近发表的数据及区域内火山岩的研究成果,对卡拉麦里地区石炭纪—二叠纪构造-岩浆演化过程给出了新认识,即卡拉麦里地区从后碰撞到陆内伸展的构造转换时间为早石炭世末期—晚石炭世早期,后碰撞阶段岩浆岩以钙碱性I型花岗岩、玄武安山岩、安山岩为特点,陆内伸展阶段以典型的双峰式岩浆岩(辉长岩+花岗岩、玄武岩+流纹岩)及A型花岗岩为特点,卡拉麦里地区具有正εNd值的花岗岩类来源于亏损地幔形成的年轻地壳的部分熔融。  相似文献   

14.
选择3个典型岩体,即位于西南天山东段的拜城县英买来岩体和位于西段阔克萨岭区的川乌鲁岩体、巴雷公岩体(为了对比,也选择了位于塔里木盆地西北缘的麻扎山岩体),进行了岩石学和地球化学研究。结果表明,这些岩体具有不同的特点。英买来岩体为黑云母花岗岩和二云母花岗岩,具有高的SiO2含量,弱过铝,高的Sr同位素初始值(约0.710)和负的εNd(t)值(-4~-6),属于S—A型之间的过渡类型。麻扎山岩体由正长岩组成,属于碱性岩,微量元素标准化图解和其他岩体明显不同的是没有明显的Nb和Ta的负异常。川乌鲁岩体是一个由3个不同期次岩石组成的杂岩体,主体为正长岩-二长岩,地球化学特征显示是由基性岩浆和酸性岩浆不同程度混合形成的。位于同一构造区的巴雷公岩体则与川乌鲁岩体中的花岗斑岩的地球化学特征相似。综合岩石学和地球化学特征推测,南天山东段的英买来岩体是地壳熔融的结果,没有任何地幔物质加入的地球化学信息,西段的阔克萨岭地区酸性岩浆的形成则可能是来自于幔源底侵的基性岩浆导致薄的地壳发生熔融的结果。麻扎山岩体则完全是不同构造背景的产物,有可能与发生在塔里木盆地的二叠纪大规模的岩浆活动有关。因此,二叠纪岩浆活动的性质主要受地壳成分和结构的控制。  相似文献   

15.
《地学前缘(英文版)》2020,11(6):2003-2015
This paper presents an apatite U–Pb and geochemistry archive for exposed plutons and metamorphic rocks of the Kyrgyz South Tian Shan (STS) within the Central Asian Orogenic Belt. Apatite U–Pb dates and trace-element geochemistry are provided for 17 samples from late Carboniferous–early Permian I-type granites in the Terktinsky complex and A-type granites in the Kokshaal Range; early Devonian granites in the Kembel complex; Cryogenian granitoids and tuffs from the Middle Tian Shan and gneisses from the Atbashi metamorphic complex. These samples form a comprehensive selection of igneous and metamorphic rocks within the cores of Mesozoic basement highs that supplied detritus to adjacent basins such as the Tarim, Ferghana and Yarkand-Ferghana Basins. Generally, the granitoid samples preserve primary igneous apatite U–Pb ages that are within uncertainty of previously published zircon U–Pb dates. The apatites from the Atbashi metamorphic complex record anomalous Ordovician dates with large uncertainties that are interpreted as mixing ages between Cryogenian protolith formation and Carboniferous metamorphism. Principal component analysis discriminates apatite samples from the different bedrock terranes in the Kyrgyz STS based on their geochemical fingerprint and categorizes the samples with respect to an extensive apatite geochemical archive. The combined apatite-zircon archive provides a novel framework for provenance studies on the Meso–Cenozoic sedimentary history of the Central Asian Orogenic Belt.  相似文献   

16.
The Sahara–Umm Adawi pluton is a Late Neoproterozoic postcollisional A-type granitoid pluton in Sinai segment of the Arabian–Nubian Shield that was emplaced within voluminous calc-alkaline I-type granite host rocks during the waning stages of the Pan-African orogeny and termination of a tectonomagmatic compressive cycle. The western part of the pluton is downthrown by clysmic faults and buried beneath the Suez rift valley sedimentary fill, while the exposed part is dissected by later Tertiary basaltic dykes and crosscut along with its host rocks by a series of NNE-trending faults. This A-type granite pluton is made up wholly of hypersolvus alkali feldspar granite and is composed of perthite, quartz, alkali amphibole, plagioclase, Fe-rich red biotite, accessory zircon, apatite, and allanite. The pluton rocks are highly evolved ferroan, alkaline, and peralkaline to mildly peraluminous A-type granites, displaying the typical geochemical characteristics of A-type granites with high SiO2, Na2O + K2O, FeO*/MgO, Ga/Al, Zr, Nb, Ga, Y, Ce, and rare earth elements (REE) and low CaO, MgO, Ba, and Sr. Their trace and REE characteristics along with the use of various discrimination schemes revealed their correspondence to magmas derived from crustal sources that has gone through a continent–continent collision (postorogenic or postcollisional), with minor contribution from mantle source similar to ocean island basalt. The assumption of crustal source derivation and postcollisional setting is substantiated by highly evolved nature of this pluton and the absence of any syenitic or more primitive coeval mafic rocks in association with it. The slight mantle signature in the source material of these A-type granites is owed to the juvenile Pan-African Arabian–Nubian Shield (ANS) crust (I-type calc-alkaline) which was acted as a source by partial melting of its rocks and which itself of presumably large mantle source. The extremely high Rb/Sr ratios combined with the obvious Sr, Ba, P, Ti, and Eu depletions clearly indicate that these A-type granites were highly evolved and require advanced fractional crystallization in upper crustal conditions. Crystallization temperature values inferred average around 929°C which is in consistency with the presumably high temperatures of A-type magmas, whereas the estimated depth of emplacement ranges between 20 and 30 km (upper-middle crustal levels within the 40 km relatively thick ANS crust). The geochronologically preceding Pan-African calc-alkaline I-type continental arc granitoids (the Egyptian old and younger granites) associated with these rocks are thought to be the crustal source of f this A-type granite pluton and others in the Arabian–Nubian Shield by partial melting caused by crustal thickening due to continental collision at termination of the compressive orogeny in the Arabian–Nubian Shield.  相似文献   

17.
Accessory monazites from 35 granitoid samples from the Western Carpathian basement have been analysed with the electron microprobe in an attempt to broadly constrain their formation ages, on the basis of their Th, U and Pb contents. The sample set includes representative granite types from the Tatric, Veporic and Gemeric tectonic units. In most cases Lower Carboniferous (Variscan) ages have been obtained. However, a much younger mid-Permian age has been recorded for the specialised S-type granites of the Gemeric Unit, and several small A- and S-type granite bodies in the Veporic Unit and the southern Tatric Unit. This distinct Permian plutonic activity in the southern part of the Western Carpathians is an important, although previously little considered geological feature. It appears to be not related to the Variscan orogeny and is interpreted here to reflect the onset of the Alpine orogenic cycle, with magma generation in response to continental rifting. The voluminous Carboniferous granitoid bodies in the Tatric and Veporic units comprise S- and I-type variants which document crustal anatexis accompanying the collapse of a compressional Variscan orogen sector. The Variscan magmas were most likely produced through the remelting of a subducted Precambrian volcanic arc-type crust which included both igneous and sedimentary reworked volcanic-arc material. Although the 2C errors of the applied dating method are quite large and typically ᆞ-20 Ma for single samples, it would appear from the data that the Variscan S-type granitoids (333-367 Ma) are systematically older than the Variscan I-type granitoids (308-345 Ma). This feature is interpreted in terms of a prograde temperature evolution in the deeper parts of the post-collisional Variscan crust. In accordance with recently published zircon ages, this study shows that the Western Carpathian basement must be viewed as a distinct "eastern" tectonomagmatic province in the Variscan collision zone, where the post-collisional crustal melting processes occurred ~20 Ma earlier than in the central sector (South Bohemian Batholith, Hohe Tauern Batholith).  相似文献   

18.
张喜  王信水  江拓  高俊 《地球科学》2022,47(3):1038-1058
位于中亚造山带西段和塔里木克拉通之间的天山造山带的古生代构造演化历史目前还存在很大争议,其广泛发育的古生代岩浆岩则是揭示俯冲增生过程和构造体制转换的重要岩石探针.本文对我国西天山巴仑台地区的7个古生代岩浆岩进行了系统的年代学和地球化学研究.LA-ICP-MS锆石U-Pb定年限定它们的结晶年龄在319~307 Ma之间,...  相似文献   

19.
We use 369 individual U–Pb zircon ages from 14 granitoid samples collected on five islands in the Cyclades in the Aegean Sea, Greece, for constraining the crystallisation history of I- and S-type plutons above the retreating Hellenic subduction zone. Miocene magmatism in the Cyclades extended over a time span from 17 to 11 Ma. The ages for S-type granites are systematically ~2 million years older than those for I-type granites. Considering plutons individually, the zircon data define age spectra ranging from simple and unimodal to complex and multimodal. Seven of the 14 investigated samples yield more than one distinct zircon crystallisation age, with one I-type granodiorite sample from Mykonos Island representing the most complex case with three resolvable age peaks. Two samples from S-type granites on Ikaria appear to have crystallised zircon over 2–3 million years, whereas for the majority of individual samples with multiple zircon age populations the calculated ages deviate by 1–1.5 million years. We interpret our age data to reflect a protracted history involving initial partial melting at deeper lithospheric levels, followed by crystallisation and cooling at shallower crustal levels. Our study corroborates published research arguing that pluton construction is due to incremental emplacement of multiple magma pulses over a few million years. Assuming that multiple age peaks of our 14 samples can indeed serve to quantify time spans for magmatic emplacement, our data suggest that Aegean plutons were constructed over a few million years. Our tectonic interpretation of the U–Pb ages is that the S-type granites resulted from partial melting and migmatisation of the lower crust, possibly starting at ~23 Ma. The I-type granites and associated mafic melts are interpreted to reflect the magmatic arc stage in the Cyclades starting at ~15 Ma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号