首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对轴承钢中钙铝酸盐大型夹杂物的控制问题,通过计算GCr15轴承钢中尖晶石MgO·Al2 O3、钙的铝酸盐CaO·6Al2 O3夹杂物生成热力学,分析精炼渣成分与夹杂物类型之间的定量关系.结果表明:当钢水中含有质量分数0.10×10-6的溶解钙[Ca]时,只要溶解镁[Mg]质量分数小于10×10-6,MgO·Al2O3就会被[Ca]还原成 CaO·6Al2O3;当精炼渣碱度为7.04,(MgO)质量分数为1.38%时,钢水中溶解[Mg]质量分数比临界[Mg]质量分数低56%,夹杂物以尺寸大于10μm的CaO-Al2O3系复合夹杂为主;当精炼渣碱度为3.75,(MgO)质量分数3.14%时,钢水中溶解[Mg]质量分数比临界[Mg]质量分数低14%,夹杂物以尺寸小于8μm的MnS包裹MgO·Al2 O3复合夹杂为主;当精炼渣钙铝比C/A为1.8~2.0时,控制精炼渣碱度R为4.5~5.5,(MgO)质量分数为3%~5%,即能使钢中MgO·Al2O3保持稳定而不转变为CaO·6Al2O3.  相似文献   

2.
研究了EAF-LF-VD-CC流程冶炼气瓶钢30CrMo时精炼过程中含MgO.Al2O3夹杂物的生成和转化,对夹杂物进行了三维分析观察.研究结果表明:LF精炼30min后夹杂物中Mg含量减小,Ca含量增加,MgO.Al2O3夹杂物消失.LF精炼后期Mg含量变化不大,Ca含量减小,未出现MgO.Al2O3夹杂物;VD精炼过程中夹杂物中的Mg含量增加,Ca含量变化不大,重新生成了MgO.Al2O3夹杂物;精炼过程中MgO.Al2O3夹杂物可以向复合夹杂物转变的,但为防止精炼后期MgO.Al2O3夹杂物重新生成必须保证钢液中具有一定的钙含量.  相似文献   

3.
本研究制备了不同氧、硫含量的实验钢,采用SEM-EDX和CSLM探讨了钢中夹杂物类型及高温演变规律.结果表明,脱氧生成的MgO大多为球形,而MgO·Al2O3呈现不规则形状.单独铝脱氧钢中Al2O3夹杂物通过移动、碰撞、聚合的方式形成大型簇团.铝镁复合脱氧钢中夹杂物形貌和动态演变随着[Al],[Mg]和[S]含量的变化呈现出不同的现象.当[Mg],[Al]含量满足MgO生成条件时,夹杂物无明显聚合现象,呈弥散分布的特征;当[Mg],[Al]含量位于MgO·Al2O3生成区域时,未观察到团簇状夹杂物出现,但夹杂物粒径较MgO大;当夹杂物成分同时满足MgO和MgS生成条件时,夹杂物聚合趋势明显,推测是硫化物的形成促进了夹杂物的聚合现象.  相似文献   

4.
利用热力学软件计算了齿轮钢氧含量与夹杂物成分控制、夹杂物转变条件.结果表明,20CrMoH钢中具有较高塑性的非金属夹杂物成分(质量分数)为:SiO2 0%~10%、Al2O3 22%~55%、CaO 42%~60%、MgO 5%~10%,与之平衡的钢液中铝的质量分数大于0.020%,钙的质量分数大于0.7×10-6,a[O]为0.0005%左右;选择组成为CaO>40%、Al2O3≤37%、MgO10%、(%CaO+%MgO)/%SiO2为10、SiO2含量尽量低的渣系,钢中Al2 O3、MgO.Al2 O3夹杂物可转变为低熔点的钙铝酸盐.试验发现LF和RH精炼结束时钢液T[O]含量均随炉渣碱度增加而降低,采用高Al2O3含量的炉渣对降低T[O]含量有利;精炼过程钢液中夹杂物按"Al2O3系夹杂物→MgO--Al2O3系夹杂物→CaO--MgO--Al2O3系夹杂物"顺序发生转变,其中MgO--Al2 O3系夹杂物向CaO--MgO--Al2 O3系夹杂物的转变是由外向内逐步进行的,转变速度相对较慢;降低T[O]含量有利于生成较低熔点的CaO--MgO--Al2O3系夹杂物.  相似文献   

5.
超低氧车轮钢精炼过程非金属夹杂物的转变   总被引:1,自引:0,他引:1  
研究了采用LD-LF-VD-CC工艺流程生产超低氧高速车轮钢时,精炼过程中夹杂物的生成与变化.实验在出钢时加入足够的Al进行终脱氧,LF精炼过程采用强脱氧、高碱度和强还原性精炼渣工艺,能使最终铸坯w(T.O)达到7×10-6,获得高洁净度的铸坯;而且在LF精炼过程中,夹杂物完成了Al2O3→MgO·Al2O3→CaO-MgO-Al2O3类复合夹杂物的转变,得到在炼钢温度下呈液态的复合氧化物夹杂,这些液态夹杂物通过碰撞、长大和上浮去除,残留于钢中的氧化物夹杂以较低熔点的CaO-MgO-Al2O3类复合夹杂形态存在,它们在热加工过程中可以发生稍许变形,能有效改善车轮钢的疲劳性能.  相似文献   

6.
在热力学计算的基础上,对某厂钙处理前后的汽车大梁钢LG510进行取样研究,探讨钙处理对汽车大梁钢LG510夹杂物的影响。结果表明,钙处理后钢中Al2O3夹杂物得到有效变性,夹杂物的数量明显减少,夹杂物尺寸也明显减小,夹杂物形状更加规则;钢液相线温度为1873K、钢中w[Al]为0.028%时,钢中w[O]、w[Ca]分别控制在2.8×10-6~11.5×10-6、0.14×10-6~7×10-6范围内,Al2O3夹杂变性效果良好;同时将钢中w[S]控制在0.011%以下,既可生成液态铝酸钙夹杂物,也可减少CaS夹杂生成。  相似文献   

7.
对采用"EBT→LF→VD"工艺路线生产50Cr5Mo V锻钢轧辊炼钢过程全氧和夹杂物进行了分析.结果表明:LF精炼后钢液中ω(T[O])平均为47×10-6,VD出站为14×10-6,中间包为15.5×10-6,铸坯为18×10-6.LF精炼初期,钢中夹杂物主要是不规则的Al2O3夹杂,96.75%的夹杂物尺寸小于10μm.LF精炼后,大量夹杂物为Ca O-Al2O3-Si O为主要成分的0~10μm复合氧化物夹杂.钢水向中间包转移过程中保护性浇注不理想,二次氧化严重导致钢水夹杂逐渐增多,主要为球形m Ca O·n Al2O3的复合夹杂物.铸坯中99.81%的夹杂物尺寸小于10μm,其中大部分为球形钙铝酸盐夹杂,还有少量球状硅铝酸钙复合夹杂.全过程的工艺优化是控制夹杂物(主要是氧化物)的合理途径,可确保实现50Cr5Mo V合金铸钢的冶炼.  相似文献   

8.
通过FactSage 6.0热力学软件计算,研究了合金钢中镁铝尖晶石(MgO.Al2O3)形成和向低熔点复合夹杂物转化的热力学条件,以及钙处理对钢液成分和夹杂物成分的影响.研究结果表明:钢中生成镁铝尖晶石夹杂物需要镁的含量较低;当钢液中溶解钙的质量分数为1×10-6时,镁铝尖晶石会转化变成液态的复合夹杂物;随着钙加入量的增加,液态复合夹杂物中Al2O3和MgO的含量继续降低,CaO的含量继续增加,SiO2的含量较低,基本保持不变;随着钙加入量的增加,钢液中的氧含量会降低,镁含量增加.  相似文献   

9.
本文研究了镁对H13模具钢中夹杂物的影响,对H13钢中夹杂物的变性进行了热力学计算,分析了镁对夹杂物成分、形貌和粒径分布的影响。结果表明,镁处理H13钢后,夹杂物由Al2O3转变为MgO·Al2O3,复合型夹杂物的析出位置也发生了改变,夹杂物粒径变小。镁处理使钢中1μm左右的夹杂物增多,2μm以上的夹杂物减少,随着镁含量的升高,粒径的变化更明显。铝质量分数为0.01%~0.03%的H13钢中,微量的镁就可促使MgO·Al2O3夹杂物形成,镁质量分数超过1×10-4会导致H13钢中MgO·Al2O3完全消失,镁质量分数在3×10-5~5.5×10-5时钢液中镁铝尖晶石的数量达到最多。  相似文献   

10.
借助热力学软件Thermo-Calc和ASPEX自动扫描电镜等分析手段,研究了低合金高强钢精炼过程渣--钢反应和钙处理对夹杂物改性行为的影响.通过提高炉渣碱度和w(CaO)/w(Al2O3)值以及降低炉渣氧化性等措施,钙处理前钢中Al2O3夹杂物转变为靠近1600℃液相区的CaO--MgO--Al2O3复合夹杂物和少量的MgO.Al2O3尖晶石.在渣--钢反应对Al2O3部分变性的基础上,钙线喂入量每炉由优化前的800 m减少到300 m仍能达到夹杂物改性的目的.  相似文献   

11.
通过对国内某钢厂BOF-LF-CC工艺生产50CrVA弹簧钢进行全流程连续取样,综合分析了冶炼过程中总氧( T. O.)、N含量变化,非金属夹杂物的衍变规律,以及铸坯中大型夹杂物的特征.结果表明,LF精炼前T. O.和N的平均含量分别为106×10-6和13×10-6,铸坯中分别为15×10-6和39×10-6,LF过程脱氧效果明显;运输和浇注过程存在较明显的二次氧化现象,需要加强大包到中间包的保护浇注;铸坯中夹杂物主要为CaO-Al2 O3-MgO和CaO-Al2 O3-SiO2复合氧化物夹杂,其中Al2 O3含量(质量分数)较高,达到60%~70%,未得到低熔点夹杂物,可通过适当提高精炼渣碱度,或喂入适量钙线促使夹杂物充分转变为成分更加均匀的低熔点夹杂物;大型夹杂物以CaO和CaO-Al2 O3-SiO2-( MgO)球状氧化物为主,还存在一定比例的纯Al2 O3夹杂物,需要延长钢包弱搅拌时间使夹杂物充分上浮.  相似文献   

12.
通过检测分析钙处理前后钢中夹杂物的形貌和成分的变化,探讨钢液钙处理过程中夹杂物演变规律.利用热力学计算,优化钙处理工艺.结果表明,钙处理可以将钢液中不规则固态夹杂物改性为球形液态夹杂物;1873 K下,当[ Al ]为0.030%时,[O]控制在5×10-6~17×10-6,[Ca]控制在0.7×10-6~30×10-6,钢中夹杂物变性效果良好;当[Al]为0.030%时,[ S]控制在6×10-6~19×10-6,既能使钢中Al2 O3夹杂生成液态铝酸钙夹杂物,同时又可以减少CaS生成.  相似文献   

13.
本文研究了镁对H13模具钢中夹杂物的影响,对H13钢中夹杂物的变性进行了热力学计算,分析了镁对夹杂物成分、形貌和粒径分布的影响。结果表明,镁处理H13钢后,夹杂物由Al2 O3转变为MgO·Al2 O3,复合型夹杂物的析出位置也发生了改变,夹杂物粒径变小。镁处理使钢中1μm左右的夹杂物增多,2μm以上的夹杂物减少,随着镁含量的升高,粒径的变化更明显。铝质量分数为0.01%~0.03%的H13钢中,微量的镁就可促使MgO·Al2O3夹杂物形成,镁质量分数超过1×10^-4会导致H13钢中MgO·Al2O3完全消失,镁质量分数在3×10^-5~5.5×10^-5时钢液中镁铝尖晶石的数量达到最多。  相似文献   

14.
为提高武钢薄板坯连铸连轧产线集装箱钢水洁净度,通过工业试验考察了LF精炼过程炉渣成分、软吹氩以及钙处理工艺对钢中T[O]和夹杂物的影响.试验结果表明,适当提高(CaO+MgO)/SiO2有利于降低钢中T[O],但同时要考虑(CaO+MgO)/Al2O3的比值,适当增加钙处理前后软吹氩时间可明显提高钢水洁净度;将炉渣中(CaO+MgO)/SiO2和(CaO+MgO)/Al2 O3控制在合适范围不仅有利于提高钢水洁净度,而且有利于钢中低熔点CaO--MgO--Al2 O3系夹杂物的生成.根据相关热力学数据给出了实际生产钢中生成不同液态铝酸钙时[Ca]--[Al]平衡热力学计算模型.  相似文献   

15.
D2冷作模具钢最常见的失效形式为磨损失效,改善夹杂物的数量、形态和分布能降低钢的磨损率.利用颗粒镁在高温下生成镁蒸气,并通过高纯氩气携带通入钢液中,考察了镁对钢中非金属夹杂物的变性效果.实验结果表明,镁蒸气通入钢液后,钢中非金属夹杂物尺寸明显变得细小,夹杂物的成分从单纯的Al2O3和Al2O3与Cr,Mo和V等合金氧化物的复合产物向富MgO的MgO和Al2O3复合夹杂物转变.铸态组织的观察结果表明细小夹杂物在钢液中的残存对于凝固和相变过程中钢的晶粒细化有利.  相似文献   

16.
帘线钢CaO-SiO2-Al2O3-MnO系夹杂物的成分控制   总被引:1,自引:0,他引:1  
利用热力学计算软件FactSage计算出CaO-SiO2-Al2O3-MnO四元系各成分的活度数据,并通过热力学计算分析了帘线钢获得良好变形能力的CaO-SiO2-Al2O3-MnO四元系夹杂物生成所需的条件,验证了本文所介绍方法的可行性. 指出为得到塑性区的CaO-SiO2-Al2O3-MnO系夹杂物,要控制CaO-SiO2-Al2O3-MnO四元系夹杂物中Al2O3为20%,LF精炼炉中钢液的酸溶铝[Al]s含量应小于3×10-6,溶解氧含量应在2.0×10-5~6.0×10-5之间.  相似文献   

17.
以理论分析和实验研究相结合的方式分析了IF钢凝固过程中Al2O3-TiN复合夹杂物的形成机理.结果表明,以凝固分率0.9为界限,钢水凝固过程中Al2O3和TiN先后通过异质形核方式析出并结合形成Al2O3-TiN复合夹杂物;冷却速率越小,复合夹杂物粒径越大;在冷却速率一定时,可作为异质形核核心的夹杂物的粒径越大,凝固过程中析出的复合夹杂物的长大程度越小;复合夹杂物内层Al2O3粒径越小,外层TiN长大程度越明显.  相似文献   

18.
根据热力学计算,结合生产过程实际,研究了Si脱氧条件下304奥氏体不锈钢在LF精炼、连铸过程夹杂物的变化规律.结果表明,钢水中主要形成CaO-Al2O3-SiO2类复合夹杂物,钢水中Al含量随Si含量的降低逐渐减小.当精炼渣碱度R=1.5时,随精炼、连铸过程的进行,复合夹杂物中Al2O3含量逐渐减少,CaO,SiO2含量逐渐增加.终点铸坯夹杂物成分为30%~35%CaO,20%~27%Al2O3,25%~30%SiO2,其他成分含量较少.终点铸坯夹杂物略显碱性,变形能力稍弱.  相似文献   

19.
研究了轴承钢生产中各因素对钢中D类夹杂物形成的影响.对国内某特殊钢厂轴承钢中夹杂物进行了检验分析,发现钢中D类夹杂物存在多种形式;通过感应炉重熔实验,发现钢中Al含量对夹杂物的影响很大,Al过量,在MgO炉衬条件下,会大量生成MgO·Al2O3;当钢中Ca含量较高时,夹杂物全部变性为球状钙铝酸盐.研究表明,控制钢水中Ca、Mg和Al成分,是控制D类夹杂的重要手段.通过工厂试验证明,特定炉渣改性和成分优化对D类夹杂物有一定的改善作用.  相似文献   

20.
高温纯铁熔体中外加氧化铝纳米粉的研究   总被引:2,自引:0,他引:2  
在工业纯铁熔体中加入纳米Al2O3颗粒,熔炼后得到铸锭试样. 用扫描电镜(SEM)及能谱(EDS)研究了铸锭金相试样中夹杂物的存在状态及成分. 采用非水溶液电解法分离、收集铸锭中的非金属夹杂物,用SEM及EDS分析了夹杂物的形貌、大小和元素组成. 结果表明,外加的纳米Al2O3颗粒能够在纯铁熔体中稳定存在,并与杂质元素所生成的夹杂物发生复合,复合夹杂物的尺寸为5~10 μm. 纳米Al2O3颗粒一般存在于复合夹杂物的内部. 未发现纳米Al2O3团聚烧结成大于10 μm颗粒的现象. 从热力学和颗粒运动行为方面进一步分析了纳米Al2O3在纯铁熔体中的稳定性和团聚烧结成大颗粒的可能性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号