首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Yao YN  Zhang QS  Yan XZ  Zhu G  Wang ED 《FEBS letters》2003,547(1-3):197-200
The 19F nuclear magnetic resonance (NMR) spectra of 4-fluorotryptophan (4-F-Trp)-labeled Escherichia coli arginyl-tRNA synthetase (ArgRS) show that there are distinct conformational changes in the catalytic core and tRNA anticodon stem and loop-binding domain of the enzyme, when arginine and tRNA(Arg) are added to the unliganded enzyme. We have assigned five fluorine resonances of 4-F-Trp residues (162, 172, 228, 349 and 446) in the spectrum of the fluorinated enzyme by site-directed mutagenesis. The local conformational changes of E. coli ArgRS induced by its substrates observed herein by 19F NMR are similar to those of crystalline yeast homologous enzyme.  相似文献   

2.
Bacterial chaperonin GroEL with a molecular mass of 800 kDa was studied by (13)C NMR spectroscopy. Carbonyl carbons of GroEL were labeled with (13)C in an amino acid specific manner in order to reduce the number of signals to be observed in the spectrum. Combination of selective labeling and site-directed mutagenesis enabled us to establish the sequence specific assignment of the (13)C resonances from GroEL. ADP-binding induced a chemical shift change of Tyr478 in the equatorial domain and His401 in the intermediate domain, but little of Tyr203 in the apical domain. Upon complex formation with co-chaperonin GroES in the presence of ADP, Tyr478 exhibits two peaks that would originate from the cis and trans rings of the asymmetric GroEL-GroES complex. Comparison between the line width of the GroEL resonances and those from GroES in complex with GroEL revealed broadening disproportionate to the size of GroEL, implying the existence of conformational fluctuations which may be pertinent to the chaperone activity. Based on these results, we concluded that (13)C NMR observation in combination with selective labeling and site-directed mutagenesis can be utilized for probing the conformational change and dynamics of the extremely large molecules that are inaccessible with current NMR methods.  相似文献   

3.
Jain N  Li Y  Zhang L  Meneni SR  Cho BP 《Biochemistry》2007,46(46):13310-13321
The NarI recognition sequence (5'-G1G2CG3CN-3') is the most vulnerable hot spot for frameshift mutagenesis induced by the carcinogen 2-aminofluorene and its analogues in Escherichia coli. Lesioning of the guanine in the G3 position induces an especially high frequency of -2 deletion mutations; vulnerability to these mutations is modulated by the nature of the nucleotide in the N position (C approximately A > G > T). The objective of the present study was to probe the structural basis of this N-mediated influence on the propensity of the G3 lesion to form a slipped mutagenic intermediate (SMI) during translesion synthesis. We studied NarI-based fully paired [(5'-CTCG1G2CG3*CNATC-3')(5'-GATNCGGCCGAG-3'), N = dC or dT] and -2 deletion [(5'-CTCG1G2CG3*CNATC-3')(5'-GATNGCCGAG-3'), N = dC or dT] duplexes, in which G* was either AF [N-(2'-deoxyguanosin-8-yl)-2-aminofluorene] or the 19F probe FAF [N-(2'-deoxyguanosin-8-yl)-7-fluoro-2-aminofluorene]. The latter sequences mimic the bulged SMI for -2 deletion mutations. Dynamic 19F NMR, circular dichroism, and UV melting results indicated that the NarI-dC/-2 deletion duplex adopts exclusively an intercalated conformer, whereas the NarI-dT/-2 deletion duplex exists as multiple conformers. The data support the presence of a putative equilibrium between a carcinogen-intercalated and a carcinogen-exposed SMI for the dT/-2 duplex. A similar dT-induced conformational heterogeneity was observed for the fully paired duplexes in which all three guanines were individually modified by AF or FAF. The frequency of the carcinogen stacked S-conformation was found to be highest (69-75%) at the G3 hot spot in NarI-dC duplexes. Taken together, our results support the hypothesis that the conformational stability of the SMI is a critical determinant for the efficacy of -2 frameshift mutagenesis in the NarI sequence. We also provide evidence for AF/FAF conformational compatibility in the NarI sequences.  相似文献   

4.
Single-stranded DNA (ssDNA) is an essential intermediate in various DNA metabolic processes and interacts with a large number of proteins. Due to its flexibility, the conformations of ssDNA in solution can only be described using statistical approaches, such as flexibly jointed or worm-like chain models. However, there is limited data available to assess such models quantitatively, especially for describing the flexibility of short ssDNA and RNA. To address this issue, we performed FRET studies of a series of oligodeoxythymidylates, (dT)N, over a wide range of salt concentrations and chain lengths (10 < or = N < or = 70 nucleotides), which provide systematic constraints for testing theoretical models. Unlike in mechanical studies where available ssDNA conformations are averaged out during the time it takes to perform measurements, fluorescence lifetimes may act here as an internal clock that influences fluorescence signals depending on how fast the ssDNA conformations fluctuate. A reasonably good agreement could be obtained between our data and the worm-like chain model provided that limited relaxations of the ssDNA conformations occur within the fluorescence lifetime of the donor. The persistence length thus estimated ranges from 1.5 nm in 2 M NaCl to 3 nm in 25 mM NaCl.  相似文献   

5.
A fast method for the simultaneous detection of different glycosidolytic activities in commercially available enzyme preparations and crude culture filtrates was found in using, as substrate, a mixture of different glycosyl fluorides and 19F NMR spectroscopy as a screening technique. Accompanying studies regarding the hydrolytic stability of these fluorides in various buffer systems, as well as conditions of their long-term storage, were carried out. A simple procedure for the preparation of beta-D-mannopyranosyl fluoride in gram quantities is given.  相似文献   

6.
Proudfoot EM  Mackay JP  Karuso P 《Biochemistry》2001,40(15):4867-4878
The molecular recognition of oligonucleotides by chiral ruthenium complexes has been probed by NMR spectroscopy using the template Delta-cis-alpha- and Delta-cis-beta-[Ru(RR-picchxnMe(2)) (bidentate)](2+), where the bidentate ligand is one of phen (1,10-phenanthroline), dpq (dipyrido[3,2-f:2',3'-h]quinoxaline), or phi (9,10-phenanthrenequinone diimine) and picchxnMe(2)() is N,N'-dimethyl-N,N'-di(2-picolyl)-1,2-diaminocyclohexane. By varying only the bidentate ligand in a series of complexes, it was shown that the bidentate alone can alter binding modes. DNA binding studies of the Delta-cis-alpha-[Ru(RR-picchxnMe(2))(phen)](2+) complex indicate fast exchange kinetics on the chemical shift time scale and a "partial intercalation" mode of binding. This complex binds to [d(CGCGATCGCG)](2) and [d(ATATCGATAT)](2) at AT, TA, and GA sites from the minor groove, as well as to the ends of the oligonucleotide at low temperature. Studies of the Delta-cis-beta-[Ru(RR-picchxnMe(2))(phen)](2+) complex with [d(CGCGATCGCG)](2) showed that the complex binds only weakly to the ends of the oligonucleotide. The interaction of Delta-cis-alpha-[Ru(RR-picchxnMe(2))(dpq)](2+) with [d(CGCGATCGCG)](2) showed intermediate exchange kinetics and evidence of minor groove intercalation at the GA base step. In contrast to the phen and dpq complexes, Delta-cis-alpha- and Delta-cis-beta-[Ru(RR-picchxnMe(2))(phi)](2+) showed evidence of major groove binding independent of the metal ion configuration. DNA stabilization induced by complex binding to [d(CGCGATCGCG)](2) (measured as DeltaT(m)) increases in the order phen < dpq and DNA affinity in the order phen < dpq < phi. The groove binding preferences exhibited by the different bidentate ligands is explained with the aid of molecular modeling experiments.  相似文献   

7.
Probing protein conformational changes plays a crucial role in protein structure and function studies. However, the lack of efficient biophysical techniques makes it difficult to obtain the distinct behaviors of different secondary structure elements in a protein upon perturbation. This paper presents a discussion of the two major problems, the effect of sidelobes and different half-width at half-height (HWHH) values, encountered in quantitative second-derivative infrared (QSD-IR) spectroscopy and introduces the development of two criteria for checking the validity of the results obtained using the QSD-IR method. It was found that neither the sidelobes nor the HWHH significantly affected the quantitative result of protein conformational changes by using poly-l-lysine and hemoglobin as model proteins. A case study of bovine serum albumin (BSA) thermal aggregation suggested that the thermal transition of BSA was a process involving sequential events, and the two helical components were found to have a distinct response to heat perturbation. These results were confirmed by two-dimensional infrared correlation spectroscopy and by results in literature, suggesting that the QSD-IR method might be a potentially powerful tool to probe the distinct response of different secondary structures to perturbation.  相似文献   

8.
9.
We have developed a Fourier transform infrared (FTIR) difference method for probing conformational changes that occur upon the binding of ligands to the nicotinic acetylcholine receptor (nAChR). Our approach is to deposit reconstituted nAChR membranes in a thin film on the surface of a germanium internal reflection element, acquire FTIR spectra in the presence of bulk aqueous solution using attenuated total reflection, and then trigger conformational changes by sequentially flowing a buffer either with or without an agonist past the film surface. Using the fluorescent probe, ethidium bromide, it is demonstrated that the method of nAChR film deposition does not affect the ability of the receptor to undergo the resting-to-desensitized state transition. The difference of FTIR spectra of nAChR films recorded in the presence and absence of agonists reveal highly reproducible infrared bands that are not observed in the difference of spectra recorded with only buffer flowing past the film surface. Some of the bands are assigned to changes in protein secondary structure and to changes in the structure of individual amino acid residues. Bands arising from the vibrations of the agonist bound to the receptor are also observed. The results demonstrate that FTIR difference spectroscopy can detect structural changes in the nAChR that occur upon the binding of ligands. The technique will be an effective method for investigating nAChR structure and function as well as receptor-drug interactions.  相似文献   

10.
Ionotropic glutamate receptors mediate the majority of vertebrate excitatory synaptic transmission. Although the structure of the GluR2 binding domain (S1S2) is well known (agonist binding site between two lobes), little is known about the time scales of conformational transitions or the relationship between dynamics and function. (19)F NMR ((19)F-labeled tryptophan) spectroscopy was used to monitor motions in the S1S2 domain bound to ligands with varying efficacy and in the apo state. One tryptophan (Trp-671) undergoes chemical exchange in some but not all agonists, consistent with mus-ms motion. The dynamics can be correlated to ligand affinity, and a likely source of the motion is a peptide bond capable of transiently forming hydrogen bonds across the lobe interface. Another tryptophan (Trp-767) appears to monitor motions of the relative positions of the lobes and suggests that the relative orientation in the apo- and antagonist-bound forms can exchange between at least two conformations on the ms time scale.  相似文献   

11.
The human plasma protein transthyretin (TTR) may form fibrillar protein deposits that are associated with both inherited and idiopathic amyloidosis. The present study utilizes solution nuclear magnetic resonance spectroscopy, in combination with hydrogen/deuterium exchange, to determine residue-specific solvent protection factors within the fibrillar structure of the clinically relevant variant, TTRY114C. This novel approach suggests a fibril core comprised of the six beta-strands, A-B-E-F-G-H, which retains a native-like conformation. Strands C and D are dislocated from their native edge region and become solvent-exposed, leaving a new interface involving strands A and B open for intermolecular interactions. Our results further support a native-like intermolecular association between strands F-F' and H-H' with a prolongation of these beta-strands and, interestingly, with a possible shift in beta-strand register of the subunit assembly. This finding may explain previous observations of a monomeric intermediate preceding fibril formation. A structural model based on our results is presented.  相似文献   

12.
We have utilized both fluorescent and nitroxide derivatives of stearic acid as probes of membrane structural heterogeneity in phospholipid vesicles under physiological conditions, as well as conditions of varying ionic strengths and temperatures where spectral heterogeneity has been previously observed and attributed to multiple ionization states of the probes. To identify the source of this spectral heterogeneity, we have utilized complimentary measurements of the relaxation properties (lifetimes) and motion of both (a) spin labeled and anthroyloxy derivatives of stearic acid (i.e., SASL and AS) and (b) a diphenylhexatriene derivative of phosphatidylcholine (DPH-PC) in single component membranes containing dimyristoylphosphatidylcholine (DMPC). We use an 15N stearic-acid spin label for optimal sensitivity to membrane heterogeneity. The lifetime and dynamics of the fluorescent phospholipid analogue DPH-PC (with no ionizable groups over this pH range) were compared with those of AS, allowing us to discriminate between changes in membrane structure and the ionization of the label. The quantum yield and rotational dynamics of DPH-PC are independent of pH, indicating that changes in pH do not affect the conformation of the host phospholipids. However, both EPR spectra of SASL and the lifetime or dynamics of AS are affected profoundly by changes in solution pH. The apparent pKa's of these two probes in DMPC membranes were determined to be near pH 6.3, implying that at physiological pH and ionic strength these stearic-acid labels exist predominantly as a single ionized population in membranes. Therefore, the observed temperature- and ionic-strength-dependent alterations in the spectra of SASL as well as the lifetime or dynamics of AS in DMPC membranes at neutral pH are due to changes in membrane structure rather than the ionization of the probes. The possibility that ionic gradients across biological membranes induce alterations in phospholipid structures, thereby modulating lipid-protein interactions is discussed.  相似文献   

13.
Hass MA  Jensen MR  Led JJ 《Proteins》2008,72(1):333-343
Electric fields generated in native proteins affect almost every aspect of protein function. We present a method that probes changes in the electric field at specific locations within a protein. The method utilizes the dependence of the amide (1)H and (15)N NMR chemical shifts on electric charges in proteins. Charges were introduced at different positions in the blue copper protein plastocyanin, by protonation of side chains or by substitution of the metal ion. It is found that the associated chemical shift perturbations (CSPs) stem mainly from long-range electric field effects caused by the change in the electric charge. It is demonstrated that the CSPs can be used to estimate the dielectric constant at different locations in the protein, estimate the nuclear shielding polarizability, or position charges in proteins.  相似文献   

14.
Crystallography and cryo-electron microscopy have advanced atomic resolution perspectives of inactive and active states of G protein-coupled receptors (GPCRs), alone and in complex with G proteins or arrestin. 19F NMR can play a role in ascertaining activation mechanisms and understanding the complete energy landscape associated with signal transduction. Fluorinated reporters are introduced biosynthetically via fluorinated amino acid analogs or chemically, via thiol-specific fluorinated reporters. The chemical shift sensitivity of these reporters makes it possible to discern details of conformational ensembles. In addition to spectroscopic details, paramagnetic species can be incorporated through orthogonal techniques to obtain distance information on fluorinated reporters, while T2-and T1-based relaxation experiments provide details on exchange kinetics in addition to fluctuations within a given state.  相似文献   

15.
Studies of the perturbing effect of chiral solvating agents (CSAs) 5a and mostly of 5c upon the NMR spectra of chiral Delta(2)-oxazoline 1 demonstrated the ability of these fluoroalcohols to afford diastereomeric solvates from these solutes. Thus, for all tested Delta(2)-oxazolines 1Aa-d, 1Ba, and 1e there is at least one possibility to proceed to their enantiomeric discrimination either by (1)H or (19)F NMR using these CSAs (see Fig. 1). NMR results are discussed from substrate and CSA structure standpoints and a solvation model is proposed on the basis of the inequivalence senses generally observed. Then the method was applied to extracts of incubated locust tissues obtained by solid phase extraction (SPE) after a partial unmasking of the substrate 1.  相似文献   

16.
  1. Download : Download high-res image (114KB)
  2. Download : Download full-size image
  相似文献   

17.
The multi-stranded DNA complexes formed by the oligonucleotides d(T15G4T2G4), Tel, and d(T15G15), TG, were examined by nuclease digestion and Raman spectroscopy. Both Tel and TG can aggregate to form structures consisting of multiple, parallel-oriented DNA strands with two independent structural domains. Overall, the structures of the TG and Tel aggregates appear similar. According to the Raman data, the majority of bases are in C2'-endo/anti conformation. The interaction of guanines at the 3'-ends in both complexes stabilizes the complexes and protects them from degradation by exonuclease III. The 5'-extensions remain single-stranded and the thymines are accessible to single-strand-specific nuclease digestion. The extent of enzymatic cleavage at the junction at the 5' end of the 15 thymines implies a conformational change between this part of the molecule and the guanine-rich region. The differential enzymatic sensitivity of the complexes suggests there are variations in backbone conformations between TG and Tel aggregates. TG aggregates were more resistant to digestion by DNase I, Mung Bean nuclease, and S1 nuclease than Tel complexes. It is proposed that the lower DNase I sensitivity may be partly due to the more stable backbone exhibited by TG than Tel complexes. Structural uniformity along the guanine core of TG is suggested, as there is no indication of structural discontinuities or protected sites in the guanine-rich regions of TG aggregates. The lower extent of digestion by Mung Bean nuclease at the 3' end implies that these bases are inaccessible to the enzyme. This suggests that there is minimal fraying at the ends, which is consistent with the extreme thermal stability of the TG aggregates.  相似文献   

18.
The site-specific DNA cleavage and religation activities of the vaccinia virus type IB topoisomerase at (C/T)CCTT(+1)X(-1) sites in duplex DNA have allowed detailed investigations of the chemical and conformational steps on the reaction pathway of this enzyme (see accompanying article (Kwon, K., and Stivers, J. T. (2002) J. Biol. Chem. 277, 345-352)). To extend these studies to the DNA substrate, we have performed 19F NMR experiments using substrates in which the +1 T has been replaced with the NMR-sensitive thymidine base analogue 5-fluoro-2'-deoxyuridine (5-F-dUrd). Substitution of 5-F-dUrd has little effect on the binding affinity of topoisomerase I for DNA, results in small changes in the cleavage and religation rate constants, and produces a net 3-fold decrease in the cleavage equilibrium constant as compared with the CCCTT consensus DNA. One-dimensional 19F NMR experiments show that the +1 5-F-dUrd is in a dynamic equilibrium between a stacked and unstacked state in both the noncovalent complex and the covalent phosphotyrosine complex. These NMR observations are supported by the selective sensitivity of the +1 T and +1 5-F-dUrd to KMnO4 oxidation. A role for localized DNA distortion in the topoisomerase I mechanism is suggested.  相似文献   

19.
20.
Cytochrome c (Cc) is a soluble electron carrier protein, transferring reducing equivalents between Cc reductase and Cc oxidase in eukaryotes. In this work, we assessed the structural differences between reduced and oxidized Cc in solution by paramagnetic NMR spectroscopy. First, we have obtained nearly-complete backbone NMR resonance assignments for iso-1-yeast Cc and horse Cc in both oxidation states. These were further used to derive pseudocontact shifts (PCSs) arising from the paramagnetic haem group. Then, an extensive dataset comprising over 450 measured PCSs and high-resolution X-ray and solution NMR structures of both proteins were used to define the anisotropic magnetic susceptibility tensor, Δχ. For most nuclei, the PCSs back-calculated from the Δχ tensor are in excellent agreement with the experimental PCS values. However, several contiguous stretches—clustered around G41, N52, and A81—exhibit large deviations both in yeast and horse Cc. This behaviour is indicative of redox-dependent structural changes, the extent of which is likely conserved in the protein family. We propose that the observed discrepancies arise from the changes in protein dynamics and discuss possible functional implications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号