首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 75 毫秒
1.
刘佳新 《计算机工程》2012,38(12):39-41
现有的增量式挖掘算法在支持度发生变化时,需要对序列数据库进行重复挖掘,为减少由此产生的时空消耗,提出一种高效的增量式序列模式挖掘算法。算法采用频繁序列树作为序列存储结构,当序列数据库和最小支持度发生变化时,通过执行更新操作,实现频繁序列树的更新,利用深度优先遍历频繁序列树找到序列数据库中所有的序列模式。实验结果表明,与IncSpan算法和PrefixSpan算法相比,该算法的挖掘效率较高。  相似文献   

2.
基于序列树的增量式序列模式更新算法   总被引:1,自引:0,他引:1  
在序列数据库更新时,现有的增量式序列模式挖掘算法只提到序列的插入操作和序列的扩展操作两种情况,没有针对序列删除操作。提出了一种基于序列树的增量式序列模式更新算法(ISPST)。当数据库更新时,ISPST算法只需要对与删除序列有关的序列构造投影数据库,实现对序列树的更新操作,通过深度优先遍历序列树得到更新后数据库中的所有序列模式。实验结果表明,当支持度发生变化时,ISPST算法在时间性能上优于PrefixSpan算法和IncSpan算法。  相似文献   

3.
为了减少在序列模式挖掘过程中由于重复运行挖掘算法而产生的时空消耗,提出了一种基于频繁序列树的交互式序列模式挖掘算法(ISPM). ISPM算法采用频繁序列树作为序列存储结构,频繁序列树中存储数据库中满足频繁序列树支持度阈值的所有序列模式及其支持度信息.当支持度发生变化时,通过减少本次挖掘所要构造投影数据库的频繁项的数量来缩减投影数据库的规模,从而减少时空消耗.实验结果表明,ISPM算法在时间性能上优于PrefixSpan算法和Inc-Span算法  相似文献   

4.
在增量式序列模式挖掘算法中,数据库更新只有插入和扩展2种操作,未考虑序列删除的情况。为此,提出一种基于频繁序列树的增量式序列模式更新算法(IUFST)。在数据库和支持度发生变化时,IUFST算法分不同情况对频繁序列树进行更新操作,缩减投影数据库的规模,提高算法效率。实验结果表明,该算法在时间性能上优于PrefixSpan算法和IncSpan算法。  相似文献   

5.
不产生候选的快速投影频繁模式树挖掘算法   总被引:8,自引:0,他引:8  
1.概述近年来,对事务数据库、时序数据库和各种其它类型数据库中的频繁模式挖掘的研究越来越普及。许多先前的研究都是采用Apriori或类似的候选产生—检查迭代算法,使用候选项集来找频繁项集。这些算法都基于一种重要的反单调的Apriori性质:任何非频繁的(k—1)-项集都不可能是频繁k-项集的子集。因此,如果一个候选k-项集的(k—1)-子集不在频繁(k—1)-项集中,则该候选也不可能是频繁的,从而可  相似文献   

6.
基于频繁模式树的关联规则增量式更新算法   总被引:48,自引:1,他引:48  
研究了大型事务数据库中关联规则的增量式更新总是,提出了一种基于频繁模式树的关联规则增量式更新算法,以处理最小支持度或事务数据库发生变化后相应关联规则的更新问题,并对其性能进行了分析。  相似文献   

7.
李陶深  李新仕 《计算机科学》2006,33(B12):136-138,177
本文分析FP-growth算法存在的主要问题,提出了一种新的基于投影的频繁模式树构造算法。该算法充分利用大型数据库的投影运算能力,按层来构造频繁模式树(FP-tree),有效地解决了传统的FP-tree构造中存在的问题。实验结果表明,本文的算法与传统的频繁模式树的构造算法相比,具有比较好的时间和空间的可伸缩性。  相似文献   

8.
张坤  陈越  朱扬勇 《计算机工程》2007,33(19):69-71
在已有模式的基础上,该文挖掘出了新的模式,减少了挖掘原始数据库次数,指出了IncSpan+算法存在的问题,说明了基于半频繁模式的增量挖掘算法的缺陷,提出了一种增量序列模式挖掘算法。该算法构造了前缀树表示序列模式,并用广度剪枝和深度剪枝维护该前缀树的结构。实验表明,该算法具有良好的性能。  相似文献   

9.
提出一种基于投影和树的闭合频繁模式挖掘的算法.此算法利用一种数据结构:投影和树,把事务投影到这棵前缀树上,它除了可以从空间上紧凑地存放频繁模式外,还建立了层的概念,挖掘时充分利用已有的计算结果,不重复计算.另外挖掘时,算法只对投影和树进行一次遍历,不需要进行耗时的I/O操作,也不需要递归地建立条件FP树而消耗大量的CPU计算资源.实验结果表明在稠密集上,其效率较高.  相似文献   

10.
在许多科学和商业领域,序列模式的发现技术发挥着越来越重要的作用,然而人们对于高效的基于投影树算法的并行模式关注较少。该文首先介绍了频繁序列挖掘模式的基本概念,然后基于投影树算法,提出了分布式存储并行序列挖掘算法,并对算法的性能进行了详细的分析。  相似文献   

11.
基于投影数据集的序列模式增量挖掘算法   总被引:1,自引:0,他引:1  
提出一种基于投影数据集的序列增量更新算法Inc_SPM,该算法以PrefixSpan算法为基础。首先利用已有的知识得出频繁1序列,然后生成投影数据集以迭代产生频繁k序列;同时为了控制投影数据集的规模,利用等价投影数据集来改进投影终止条件。  相似文献   

12.
最大频繁序列发现是数据挖掘中的一个重要分支.本文提出一种发现最大频繁序列集的算法MAXSeq,该算法通过对潜在的最大频繁序列进行选择性的扩展,直接判断其是否为最大序列,无须对候选最大序列进行维护,从而显著减小了存储开销.同时,优化策略的恰当运用对降低CPU时间起着至关重要的作用.  相似文献   

13.
序列模式挖掘就是在时序数据库中挖掘相对时间或其他模式出现频率高的模式.序列模式发现是最重要的数据挖掘任务之一,并有着广阔的应用前景.针对静态数据库,序列模式挖掘已经被深入的研究.近年来,出现了一种新的数据形式:数据流.针对基于数据流的序列模式挖掘的研究还不是十分深入.提出一个有效的基于数据流的挖掘频繁序列模式的算法SSPM,利用到2个数据结构(F-list和Tatree)来处理基于数据流的序列模式挖掘的复杂性问题.SSPM的优点是可以最大限度地降低负正例的产生,实验表明SSPM具有较高的准确率.  相似文献   

14.
SPADE: An Efficient Algorithm for Mining Frequent Sequences   总被引:63,自引:0,他引:63  
Zaki  Mohammed J. 《Machine Learning》2001,42(1-2):31-60
In this paper we present SPADE, a new algorithm for fast discovery of Sequential Patterns. The existing solutions to this problem make repeated database scans, and use complex hash structures which have poor locality. SPADE utilizes combinatorial properties to decompose the original problem into smaller sub-problems, that can be independently solved in main-memory using efficient lattice search techniques, and using simple join operations. All sequences are discovered in only three database scans. Experiments show that SPADE outperforms the best previous algorithm by a factor of two, and by an order of magnitude with some pre-processed data. It also has linear scalability with respect to the number of input-sequences, and a number of other database parameters. Finally, we discuss how the results of sequence mining can be applied in a real application domain.  相似文献   

15.
基于FP-tree的最大频繁模式挖掘算法   总被引:11,自引:0,他引:11  
冯志新  钟诚 《计算机工程》2004,30(11):123-124
在FP-tree结构的基础上提出了最大频繁模式挖掘算法FP-Max。算法FP-Max只需要两次数据库扫描,挖掘过程不会产生候选项集。实验表明.算法FP-Max在挖掘密集型数据集方面是高效的。  相似文献   

16.
基于投影分支的快速频繁子树挖掘算法   总被引:9,自引:1,他引:9  
频繁子树挖掘在生物信息、Web挖掘等很多领域都具有较高的应用价值.在频繁子树挖掘中引入投影分支的概念,并提出基于投影分支的快速频繁子树挖掘算法——FTPB.FTPB算法充分利用树结构本身的特点,在计算投影分支的同时解决树同构的判断问题,扫描数据库后能够根据当前的频繁模式树直接生成新的频繁模式树,可减少数据库的扫描次数和候选模式的搜索空间,从而降低算法复杂度.理论分析和实验结果表明,该算法较其他同类算法相比具有较高的效率,是有效可行的.  相似文献   

17.
PretixSpan算法解决了类Apriori算法的不足,但产生的投影数据库花费了较多的存储空间及扫描时间.本文基于PretixSpan算法提出PSD算法,舍弃了对非频繁项的存储及对投影序列数小于最小支持数的投影数据库的扫描,减少了不必要的存储空间,提高了查询速度.实验证明,PSD算法比PretixSpan算法具有更好的时空性能.  相似文献   

18.
频繁模式挖掘是最基本的数据挖掘问题,由于内在复杂性,提高挖掘算法性能一直是个难题.耶是通过数据库混合投影来挖掘频繁模式完全集的全新算法.HP混合投影思想是:任意数据集都不能简单地归入某个单一特性类别,挖掘过程应根据局部数据子集的特性变化动态地调整频繁模式树构造策略、事务子集表示形式、投影方法.HP提出基于树表示的虚拟投影与基于数组表示的非过滤投影,较好地解决了提高时间效率与节省内存空间的矛盾.实验表明,HP时间效率比Apriori,FP—Growth和H-Mine高出1~3个数量级,并且空间可伸缩性也大大优于这些算法.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号

京公网安备 11010802026262号