首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The use of breathing simulators for the in vitro determination of the inhaled mass of drug from nebulizers has become widely accepted. Their use is, however, based on the assumption that there is a correlation between the in vitro and in vivo inhaled mass of drug. The aim of the study was therefore to investigate whether a new breathing simulator--the MIMIC Breathing Emulator (Medic-Aid Limited, Bognor Regis, UK)--could accurately emulate the in vivo inhaled mass of budesonide suspension for nebulization. Eight adult healthy subjects were included. Each subject inhaled for 2 min from a Spira Module 1 jet nebulizer (Respiratory Care Center, H?meenlinna, Finland), charged with 1.0 mg of budesonide suspension for nebulization (0.5 mg mL-1, 2 mL suspension, AstraZeneca, Sweden) and supplied with an inhaled mass filter between the nebulizer and the subject. The breathing patterns were recorded during the nebulization and simulated in vitro at two different experimental sites (simulations A and B) with the breathing simulator. With the patients breathing through the filters (in vivo test), inhaled mass of budesonide averaged 103.6 micrograms. The two in vitro experiments using the simulator revealed similar results with in vitro simulation A equal to 101.0 micrograms and simulation B 99.1 micrograms. There were no statistically significant differences between the in vivo results and those of in vitro simulation A. Results were significantly different for simulation B (p = 0.032) although the difference was less than 4.5%. These data indicate that the breathing simulator can be used to accurately simulate sine waveforms, human breathing patterns, and the in vitro and in vivo inhaled mass of budesonide suspension for nebulization.  相似文献   

2.
A study was undertaken to compare the amount of nebulized budesonide suspension and nebulized terbutaline sulphate solution inhaled by healthy adult subjects when conventional jet and ultrasonic nebulizers were used. Ten healthy subjects (5 male; age range, 16-52 years) used two conventional nebulizers: the Spira Elektro 4 jet nebulizer (Respiratory Care Center, H?meenlinna, Finland) and the Spira Ultra ultrasonic nebulizer (Respiratory Care Center) in a breath-synchronized mode with each drug. The amount of drug inhaled, the inhaled mass, was defined as the amount of drug deposited on a filter between the inspiratory port of the nebulizer and the mouthpiece. The amount of budesonide and terbutaline sulphate was determined by reversed-phase high-performance liquid chromatography. Single-dose respules were used (0.5 mg of budesonide and 5.0 mg of terbutaline sulphate), and nebulization time up to the defined gravimetric output was recorded. The inhaled mass of budesonide varied depending on the nebulizer used, whereas the inhaled mass of terbutaline was unaffected by the choice of nebulizer. The median inhaled mass of budesonide was 31.4% of the nominal dose (i.e., dose of drug in the respule per label claim) with the Spira Elektro 4 and 9.9% with the Spira Ultra, whereas the median inhaled mass of terbutaline was 50% with the Spira Elektro 4 and 52% with the Spira Ultra. It appears that a suspension is generally more difficult to nebulize than a solution and that the budesonide suspension should not be used in conventional ultrasonic nebulizers.  相似文献   

3.
The aim of this study was to determine the output in-vitro of budesonide from two different nebulizers under simulated breathing conditions. The BimboNeb and Nebula nebulizers were used to nebulize 2 mL of budesonide (500 microg) suspension. Particle size was determined by inertial impaction after a 5-min nebulization. Total outputs of the drug from both nebulizers were measured using a sinus flow pump to create simulated breathing conditions. Paediatric and adult breathing patterns were used, with drug output measured after 5 and 10 min nebulization. The mass median aerodynamic diameter of budesonide using the BimboNeb (4.5 microm) was significantly greater than that from the Nebula (3.4 microm) (P<0.01). With the simulated adult breathing pattern, the total drug output after 5 min with the BimboNeb (61.5 microg) was twice that from the Nebula (30.7 microg). For the paediatric breathing pattern, total outputs were very similar for both nebulizers. In all cases, nebulizing for 10 min produced greater drug outputs compared with those after 5 min, particularly for the paediatric breathing pattern. The amount of aerosolized drug available for inhalation needs to be assessed for each nebuliser used and the effect of the patient's breathing pattern should also be taken into account.  相似文献   

4.
We have quantified in vitro the influence of the facemask on the amount of drug delivered (e.g., inhaled mass) by jet nebulizer and pressurized metered dose inhaler (pMDI) valved holding chamber (VHC) combinations (non-detergent-coated and detergent-coated). Pediatric breathing patterns were used with a breathing simulator, which was connected to a face onto which each device was positioned. An inhaled mass filter interposed between the simulator and the face captured the aerosolized drug. Budesonide inhalation suspension (0.25 mg) was used with the jet nebulizers and fluticasone propionate (220 microg) pMDI with the VHCs. Maximal drug delivery was measured using constant flow through each device. Breathing pattern effects were assessed for sealed devices (no leaks) and with facemasks (possible leaks at the facemask). Inhaled mass from both nebulizers and pMDI VHCs was affected by breathing pattern, but compared to nebulizers the pMDI VHCs were significantly more variable and sensitive to several factors. The influence of VHC conditioning combined with effects of breathing pattern resulted in the inhaled mass ranging from 0.7 +/- 0.5 to 53.3 +/- 6.2%. Nebulizers were less variable (9.6 +/- 0.7 to 24.3 +/- 3.1%). Detergent coating of VHC markedly increased the inhaled mass and reproducibility of drug delivery (27.2 +/- 1.4 to 53.3 +/- 6.2%) for pMDI VHC combinations, but these effects were lost in the presence of facemasks. Using pediatric patterns of breathing, nebulizer/facemask combinations delivered 4.1 +/- 0.8 to 19.3 +/- 2.3% of the label dose while pMDI and detergent-coated VHC delivered 4.0 +/- 1.6 to 28.6 +/- 2.5%. Facemask seal is a key factor in drug delivery. Leaks around the facemask reduce drug delivery and for pMDI VHCs can negate effects of detergent coating.  相似文献   

5.
Nebulizers are widely used for the inhalation of drug solutions in a variety of respiratory diseases. The efficacy of nebulizer therapy is influenced by a great number of factors, including the design of the device and the characteristics of the drug solution. Incorrect cleaning, maintenance and disinfection procedures may change the nebulizer performance in time, whereas patient factors can influence the lung deposition of the generated aerosol. In this review the technical aspects of nebulization of drug solutions will be discussed. Two main parameters are generally used to evaluate the performance of nebulizers: the droplet size distribution of the aerosol and the drug output rate. The droplet size distribution and the drug output rate are basically determined by the design and user conditions of the nebulizer. A higher gas flow of the compressor in a jet nebulizer or a higher vibration frequency of the piezo electric crystal in an ultrasonic nebulizer, decreases the droplet size. The choice of the type of nebulizer for nebulization of a certain drug solution may initially be based on laboratory evaluation. The major part of the mass or volume distribution should preferably correspond with aerodynamic particle diameters in the range of 1 to 5 micrometer. The intended drug output must be realized within a reasonable nebulization time (less than 30 min). From the drug output only a minor fraction will be deposited in the lung. The relation between in vitro and in vivo deposition is only partly understood and to date it has not been possible to predict drug delivery only from in vitro studies on nebulizers. Therefore, studies in patients should be performed before a drug solution for nebulization can be recommended for clinical practice. The mechanical properties of nebulizers are likely to change during use. An average utilization time of nebulizers is not available. Therefore, the performance of nebulizers should be checked periodically. Patient compliance in nebulizer therapy is relatively low. This is partly due to the fact that, at present, drug solutions for nebulizers cannot be administered efficiently within a short period of time. More efficient systems should be developed. If possible, nebulizers should be substituted to more efficient systems, e.g. dry powder inhalers or metered dose inhalers.  相似文献   

6.
There are theoretical benefits of delivering drug aerosols to patients with asthma and chronic obstructive pulmonary disease (COPD) using Heliox as a carrier gas. The objective of this study was to develop systems to allow bronchodilators nebulized by a breath enhanced jet nebulizer and a vibrating mesh nebulizer to be delivered to patients in Heliox. This was achieved by attaching a reservoir to the nebulizers to ensure inhaled Heliox was not diluted by entrained air. For the vibrating mesh nebulizer, the total output was significantly higher after 5 min of nebulization when Heliox rather than air was used as the delivery gas (p < 0.001). The proportion of drug in particles <5 microm was 58.1% for Heliox and 50.1% when air was entrained. When the breath enhanced nebulizer was used a much higher driving flow of Heliox, compared to air, was required to deliver a similar dose of drug (p < 0.05). The total amount of drug likely to be inhaled was significantly higher when the vibrating mesh nebulizer (Aerogen) was used compared to the breath enhanced jet nebulizer (Pari LC plus) (p < 0.001). The amount of drug likely to be inhaled was also significantly greater for the adult as opposed to pediatric breathing pattern for all nebulizers and flows tested with the exception of the Aeroneb and Heliox entrainment. In this case, total amounts were similar for both patterns but for the pediatric pattern, the time taken to reach this output was longer. Such information is required to allow appropriate interpretation of clinical trials of drug delivery using Heliox.  相似文献   

7.
For metered dose inhalers (MDIs), high-flow cascade impaction with a United States Pharmacopia (USP) throat provides a useful prediction of in vivo lung and oropharyngeal aerosol deposition. Particles expected to deposit in the lung are included in the "fine particle fraction" measured on the bench. Comparable in vitro standards are not available for nebulizers. The present study compared aerosol deposition in an in vitro model using low-flow cascade impaction with deposition in vivo in human subjects. A low-flow (1 Lmin), 10-stage cascade impactor measured aerodynamic distributions of aerosolized interferon-gamma (IFN-gamma) from two nebulizers (Misty-Neb and AeroEclipse). (99m)Technetium diethylene triaminepenta-acetic acid ((99m)Tc-DTPA) was used as the radiolabel. Two bench conditions were specified: no breathing (standing cloud) and simulated ventilation with a piston pump (tidal volume 750 mL frequency 25 per minute and duty cycle 0.5). Mass median aerodynamic diameter (MMAD) for both nebulizers was affected by ventilation (Misty-Neb vs. AeroEclipse: 5.2 vs. 4.6 microm for standing cloud and 3.1 vs. 2.2 microm during ventilation). In three subjects, measured values of oropharyngeal deposition averaged 68.1 +/- 0.08% for Misty-Neb and 30.9 +/- 0.03% for AeroEclipse. In vivo deposition patterns compared to aerosol distributions from both nebulizers indicated that, for wet nebulization, penetration of aerosol beyond the upper airways (fine particle fraction) will occur only for aerosol particles below 2.5 microm. This assessment requires that the bench aerosol distribution be measured under conditions of clinical use (i.e., during tidal breathing).  相似文献   

8.
Aqueous droplets produced by jet nebulizers can lose water by evaporation prior to entry into the patient's mouth, or a sizing device. Evaporation causes increase in the concentration of the solution in the droplet and reduction in size. These changes can complicate interpretation of results from experiments such as in vitro particle sizing or human respiratory tract deposition. We present experimental data obtained by nebulization of isotonic saline using a variety of aerosol delivery systems employing jet nebulizers. The impact of the evaporation phenomena is particularly great when a large volume of dry dilution air is mixed with the aerosol stream--a situation that is quite common in aerosol experiments. The experimental results approach the values calculated from the theoretical mass balance models in the limit of equilibrium between the droplets and the surrounding atmosphere.  相似文献   

9.
BACKGROUND: Nebulization is a common method of medical aerosol generation and it is largely used by adults and children all over the world, both for emergency treatment of acute illness and for long-term home treatment of lung diseases. The aim of this study was to determine the differences in nebulization of inhaled corticosteroids among four representative types of compressor/nebulizers. METHODS: Twelve compressor/jet nebulizers from four commercial sources were studied (three for each type): Clenny (MEDEL), Turbo Boy/LC Plus (PARI), Nebula Nuovo/MB5 (MARKOS MEFAR) and Maxaer (ARTSANA) compressor/Sidestream (Medic-Aid Ltd.) nebulizer. We compared the required time for the treatment (nebulization time), output/minutes, compressor pressures, and aerosol characteristics of inhaled corticosteroids: Beclomethasone dipropionate, Flunisolide, Fluticasone propionate and Budesonide. RESULTS: Nebulization Times showed a significant difference between nebulizer and inhaled corticosteroids for Clenny, Turbo Boy, and Maxaer. A considerable difference in the output of nebulized drugs was observed through the compressors/nebulizers. MMAD of all inhaled corticosteroids was significantly different among the four nebulizers. The percentage of particles <5 microm (respirable range) was high for all devices with beclomethasone and budesonide (> 90%), whereas with flunisolide was good only for Clenny (98.8%) and Maxaer (96.3%), and with fluticasone only for Clenny (98%), Turbo Boy (99.1%), and Maxaer (86%). Also percentage of particles <2 microm showed significant variability among the devices. CONCLUSIONS: Our results clearly demonstrate that compressor/nebulizer unit plays a key role in the effectiveness of the treatment during inhaled corticosteroid therapy, and that several differences exist in the performance of the different nebulizers studied. Therefore, the device has the same importance of the compound to reach the best clinical response in the inflammatory diseases of the lower airways.  相似文献   

10.
Inhalation is the preferred route for asthma therapy, since it offers a rapid onset of drug action, requires smaller doses, and reduces systemic effects compared with other routes of administration. Unfortunately, inhalation devices are frequently used in an empirical manner rather than on evidence-based awareness.A wide variety of nebulizers are available. Conventional jet nebulizers are highly inefficient, as much of the aerosol is wasted during exhalation. However, incorporating an extra open vent into the system has considerably increased the amount of drug that patients receive. Breath-assisted open vent nebulizers limit the loss of aerosol during exhalation, but are dependent on the patient's inspiratory flow. Ultrasonic nebulizers produce a high mass output and have a short nebulization time, but are inefficient for delivering suspensions or viscous solutions. Adaptive aerosol delivery devices release a precise dose that is tailored to the individual patient's breathing pattern. Nebulizers have several drawbacks, and their use should be limited to patients who cannot correctly manage other devices.Pressurized metered-dose inhalers (pMDI) are practical, cheap and multidose. However, there are several problems with their use. Breath-actuated MDI are easy to use and can be activated by very low flow. However, young children may not be able to use them efficiently. Dry powder inhalers (DPI) are portable and easy to use. They are indicated either for rescue bronchodilator therapy or for regular treatment with inhaled corticosteroids and long-acting bronchodilators. The use of spacers reduces oropharyngeal deposition and improves drug delivery to the lung. Spacers do not require patient coordination, but some general rules must be followed for their optimal use.Thus, the choice of a delivery device mainly depends on the age of the patient, the drug to be administered and the condition to be treated. Proper education is also essential when prescribing an inhalation device.  相似文献   

11.
Recent studies have indicated that the deposition of intra-alveolar fibrin may play a central role in the pathogenesis of acute respiratory distress syndrome (ARDS). Our aim was to study whether the indigenous fibrinolytic agent (urokinase) normally present in the alveoli can be administered locally by nebulization in a recombinant zymogen form as single chain urokinase plasminogen activator (scu-PA). We aimed to characterize the particle size distribution, drug output, and enzymatic activity of scu-PA after nebulization with a Ventstream jet nebulizer (Medic-Aid, Bognor Regis, UK) and a Syst'AM DP-100 ultrasonic nebulizer (Pulmolink, Kent, UK). The particle size distribution was measured with a laser diffraction method and the drug output was determined by collection on filters. The amount of protein on the filters was determined with the Lowry method, and the enzymatic activity after nebulization was measured with a microtiter fibrin plate assay. The mass median diameter (MMD) of the scu-PA aerosol generated with the ultrasonic nebulizer was 3.69 (3.53-3.83) microm and with the jet nebulizer 2.96 (2.91-3.03) microm (p < 0.001). The drug output from the two nebulizers did not differ between nebulizers (p = 0.054). Fibrinolytically active scu-PA was generated with both nebulizers, but in contrast to jet nebulization, ultrasonic nebulization caused partial inactivation of scu-PA (p < 0.001). In conclusion, nebulization of scu-PA with the jet nebulizer is superior to ultrasonic nebulization in terms of particle size distribution and preservation of fibrinolytic activity.  相似文献   

12.
The mass of aerosol inhaled is primarily a function of the patient's breathing pattern and the aerosol delivery system. Once inhaled, deposition is governed by factors related to the properties of the aerosol and the individual characteristics of the patient (e.g., particle size distribution, airway geometry, and residence time). This paper will center upon the actual generation and delivery of clinical aerosols by jet nebulizers and assess variability in aerosol delivery. Because of the practical difficulties in predicting nebulizer function from first principles, it will be advocated that nebulizer function be directly measured for each clinical situation. Terms like "nebulizer output", "efficiency", etc. are to be avoided. The following definition is proposed: "aerosol inhaled" represents that quantity of drug actually delivered by a given nebulizer for a defined breathing pattern and period of time. The concept of "aerosol inhaled" allows a direct comparison of the quantity of drug delivered by different nebulizer systems and adjustment of dose of a given therapeutic agent. Bench testing of aerosol systems and measurement of "aerosol inhaled" can be made in the laboratory if careful attention is paid to the relationship between laboratory conditions and actual use, including the particle distribution and the accuracy of a radiolabel in estimating the quantity of drug nebulized.  相似文献   

13.
The poorly soluble drug buparvaquone is proposed as an alternative treatment of Pneumocystis carinii pneumonia (PCP) lung infections. Physically stable nanosuspensions were formulated in order to deliver the drug at the site of infection using nebulization. The aerosolization characteristics of two buparvaquone nanosuspensions were determined with commercial jet and ultrasonic nebulizer devices. Aerosol droplet size distribution was determined with laser diffractometry (LD). Nebulization of the nanosuspensions and dispersion media surfactant solutions produced aerosol droplets diameters in the range from 3 to 5 microm for Respi-jet Kendall, Pari Turbo Boy system and Multisonic nebulizers and particles around 9-10 microm with Omron U1. Fractions of the nanosuspensions from the nebulizer reservoir and of aerosol produced were collected to investigate changes in the size of the drug nanocrystals influenced by the nebulization technology. Comparisons were performed measuring the drug nanocrystals with photon correlation spectroscopy (PCS) and LD of the samples. Drug particle aggregates were detected in the fractions of aerosol collected from jet nebulizers. Nebulizer technology (jet vs. ultrasonic) showed influence on the stability of the drug particle size distribution of buparvaquone nanocrystals during the nebulization time evaluated.  相似文献   

14.
In vitro tests are commonly employed to assess nebulizer performance. Whether the square or sine waveforms employed during in vitro tests could alter the nebulizer performance compared to that observed when a patient breathes through the nebulizer is debatable. Accordingly, the aim of this in vitro study was to compare the rates of delivery from nebulizers with simulated human breathing patterns to those obtained with matching sine and square waveforms. Regular human breathing patterns with tidal volumes (VT) of approximately 40, approximately 200, approximately 500, and approximately 800 mL were selected. Sine and square waveforms that matched the VT, peak inspiratory flow rate (PIF), breathing frequency (f), and inspiratory duty cycle (t(i)/t(tot)) of the human breathing patterns were created with a breathing simulator. The rate of delivery of nebulized technetium-99m-labeled diethylenetriamine pentaacetic acid (99mTC-DTPA) from two different jet nebulizer brands was determined. The rate of delivery was defined as the amount of the 99mTC-DTPA deposited during 30 sec of nebulization on a filter placed between the nebulizer and the breathing simulator. The rate of delivery of 99mTC-DTPA with the human breathing pattern was similar to that measured with the matching sine or square waveforms for either nebulizer. The configuration of the breath (PIF, VT, f, t(i)/t(tot)) did, however, influence the rate of delivery. In conclusion, the shape of the waveform, in other words, one resulting from a human breathing pattern, or a matching sine or square waveform, did not influence the rate of 99mTC-DTPA delivery from a nebulizer in vitro.  相似文献   

15.
In vivo aerosol delivery efficiency was estimated in vitro for two jet nebulizers using a breath monitor (Breathe!; Pari GmbH, Germany) and breath simulator (COMPAS; Pari GmbH) to reproduce subject tidal breathing patterns. The AeroEclipse (Trudell Medical International, Canada), a breath-actuated nebulizer, and the LC Star (Pari GmbH), a breath-enhanced nebulizer, were filled with levalbuterol HCl solution (Sepracor, USA) and operated with compressed O(2) at 8 lpm. Tidal breathing patterns of 20 adult subjects were digitally recorded with the Breathe! Breath Monitor. Subjects then breathed tidally from each nebulizer separately for 1 minute and to nebulizer dryness. Levalbuterol aerosol collected on filters placed between the nebulizer and mouth was chemically assayed to determine the inspired mass (IM), wasted mass (WM) and total emitted mass (TM). Measurements were repeated using the COMPAS Breath Simulator to simulate each subject's tidal breathing pattern. IM, WM, and TM measurements using actual versus simulated tidal breathing were highly comparable for each nebulizer, except the IM (p < 0.05) from LC Star measured at nebulizer dryness. Breath simulation was an inaccurate tool for estimating the time to nebulizer dryness as simulated measurements to nebulizer dryness took significantly longer than measurements preformed with actual tidal breathing (p < 0.001). While breath simulation provides an accurate in vitro tool for estimating in vivo aerosol delivery, it should not completely replace in vivo measurements until inherent limitations in simulator operation can be overcome to provide a more clinically realistic simulation.  相似文献   

16.
The poorly soluble drug buparvaquone is proposed as an alternative treatment of Pneumocystis carinii pneumonia (PCP) lung infections. Physically stable nanosuspensions were formulated in order to deliver the drug at the site of infection using nebulization. The aerosolization characteristics of two buparvaquone nanosuspensions were determined with commercial jet and ultrasonic nebulizer devices. Aerosol droplet size distribution was determined with laser diffractometry (LD). Nebulization of the nanosuspensions and dispersion media surfactant solutions produced aerosol droplets diameters in the range from 3 to 5 μm for Respi-jet Kendall, Pari Turbo Boy system and Multisonic nebulizers and particles around 9–10 μm with Omron U1. Fractions of the nanosuspensions from the nebulizer reservoir and of aerosol produced were collected to investigate changes in the size of the drug nanocrystals influenced by the nebulization technology. Comparisons were performed measuring the drug nanocrystals with photon correlation spectroscopy (PCS) and LD of the samples. Drug particle aggregates were detected in the fractions of aerosol collected from jet nebulizers. Nebulizer technology (jet vs. ultrasonic) showed influence on the stability of the drug particle size distribution of buparvaquone nanocrystals during the nebulization time evaluated.  相似文献   

17.
Anti-infectious agents such as pentamidine, antibiotics (mainly colistine and aminoglycosides), and amphotericin B can be administered by aerosol. Apart from pentamidine and Tobi, this route of administration is not officially approved and it constitutes an empirical approach, which has benefited from recent research summarized hereafter. The most fundamental question is related to the potentially deleterious effects of nebulization processes, especially ultrasound, on the anti-infectious properties of the drugs. Colimycin, which was chosen as a reference because its polypeptide structure makes it unstable a priori, proved to be resistant to high frequency ultrasound, which is encouraging for other molecules such as aminoglycosides or betalactamins. The nebulizer characteristics also have to be taken into account. An aerosol can be produced from an amphotericin B suspension and from colistine using both an ultrasonic nebulizer and a jet nebulizer. Differentiating between good and bad nebulizers is not dependent upon the physical process involved to nebulize the drug, but on the intrinsic characteristics of the device and its performance with a known drug. The inhaled mass of an aerosol in the respirable range must be high and dosimetric nebulizers represent significant progress. Finally, administration of anti-infectious aerosols requires a new pharmacological approach to monitor treatment, and urinary assays are promising for this purpose.  相似文献   

18.
Differences in the reported efficacy of aerosolized aminoglycosides may be due, in part, to differences in aerosol delivery. Optimization of delivery systems of bench testing of nebulizers in a manner that simulates clinical conditions can lead to enhanced lung deposition in subsequent clinical studies. In the present study, we assessed the effects of varying nebulizer configuration on the performance of ultrasonic and jet nebulizers. Tobramycin was mixed with a radiotracer (99mTc) to facilitate measurement of nebulizer output and particle size. A piston ventilator provided a simulated breathing pattern, and the dose delivered to a filter corresponded to what would have been inhaled by a patient (percentage of nebulizer charge inhaled). Particle size was measured using a cascade impactor, sampling at 1 L/min. An ultrasonic nebulizer (Ultra-Neb; DeVilbiss, Somerset, PA), ventilated at 20 breaths per minute, charged with 600 mg of tobramycin (in 30-mL volume) and fitted with its standard tubing, was tested with and without the addition of one-way valves to the inspiratory and expiratory ports of the mouthpiece. In order to assess the degree of environmental contamination associated with jet nebulizer therapy, a filter was placed at the expiratory port of all jet nebulizer experiments. The addition of the valves reduced the percentage of charge inhaled from a mean +/- standard deviation (SD) of 29.2% +/- 1.4% to 7.6% +/- 2.3% and reduced mass median aerodynamic diameter [MMAD (sigma g) from 4.3 microns (2.1) to 1.45 microns (1.65)]. A Circulaire (Westmed, Tucson, AZ) jet nebulizer (7 L/min flow, 50 pounds per square inch gauge (psig), 20 breaths per minute, containing 160 mg of tobramycin in a 4-mL volume) was tested in two configurations: using a plain T-piece and using a valved inflatable aerosol chamber. The use of the holding chamber resulted in an almost twofold reduction in MMAD [MMAD (sigma g) = 2.45 microns (2.0); T-piece; 1.25 microns (2.0), holding chamber]. A slight reduction in the percentage of nebulizer charge inhaled using the holding chamber, compared to the plain T-piece, was not statistically significant (mean +/- SD of percentage inhaled with holding chamber = 20.8% +/- 1.6%; with T-piece = 23.6% +/- 0.5%). With both the jet and ultrasonic nebulizers, breathing frequency influenced percentage inhaled, with a higher percentage inhaled at 20 breaths per minute compared to 15 breaths per minute. The use of the plain T-piece at 20 breaths per minute was associated with more environmental contamination than the use of the holding chamber with the same breathing pattern (26.7% +/- 1.0%, T-piece; 4.5% +/- 0.3%, holding chamber, P < 0.0001). We conclude that nebulizer configuration can potentially affect both the amount of aerosol inhaled and the particle size, and needs to be specified precisely in treatment protocols.  相似文献   

19.
Multilamellar and oligolamellar liposomes were produced from ethanol-based soya phosphatidyl-choline proliposome formulations by addition of isotonic sodium chloride or sucrose solutions. The resultant liposomes entrapped up to 62% of available salbutamol sulfate compared with only 1.23% entrapped by conventionally prepared liposomes. Formulations were aerosolized using an air-jet nebulizer (Pari LC Plus) or a vibrating-mesh nebulizer (Aeroneb Pro small mesh, Aeroneb Pro large mesh, or Omron NE U22). All vibrating-mesh nebulizers produced aerosol droplets having larger volume median diameter (VMD) and narrower size distribution than the air-jet nebulizer. The choice of liposome dispersion medium had little effect on the performance of the Pari nebulizer. However, for the Aeroneb Pro small mesh and Omron NE U22, the use of sucrose solution tended to increase droplet VMD, and reduce aerosol mass and phospholipid outputs from the nebulizers. For the Aeroneb Pro large mesh, sucrose solution increased the VMD of nebulized droplets, increased phospholipid output and produced no effect on aerosol mass output. The Omron NE U22 nebulizer produced the highest mass output (approx. 100%) regardless of formulation, and the delivery rates were much higher for the NaCl-dispersed liposomes compared with sucrose-dispersed formulation. Nebulization produced considerable loss of entrapped drug from liposomes and this was accompanied by vesicle size reduction. Drug loss tended to be less for the vibrating-mesh nebulizers than the jet nebulizer. The large aperture size mesh (8 mum) Aeroneb Pro nebulizer increased the proportion of entrapped drug delivered to the lower stage of a twin impinger. This study has demonstrated that liposomes generated from proliposome formulations can be aerosolized in small droplets using air-jet or vibrating-mesh nebulizers. In contrast to the jet nebulizer, the performance of the vibrating-mesh nebulizers was greatly dependent on formulation. The high phospholipid output produced by the nebulizers employed suggests that both air-jet and vibrating-mesh nebulization may provide the potential of delivering liposome-entrapped or solubilized hydrophobic drugs to the airways.  相似文献   

20.
Pressurized metered-dose inhalers (pMDIs) and nebulizers are routinely employed for aerosol delivery in mechanically ventilated patients. A significant proportion of the aerosol deposits in the ventilator circuit and artificial airway, thereby reducing the inhaled drug mass. Factors influencing aerosol delivery during mechanical ventilation differ from those in spontaneously breathing patients. The English language literature on aerosol delivery during mechanical ventilation was reviewed. Marked variations in the efficiency of drug delivery with pMDIs and nebulizers occur due to differences in the technique of administration. Careful attention to five factors, viz., the aerosol generator, aerosol particle size, conditions in the ventilator circuit, artificial airway, and ventilator parameters, is necessary to optimize aerosol delivery during mechanical ventilation. Factors influencing drug delivery during NPPV are not well understood, and the efficiency of aerosol delivery in this setting is lower than that during invasive mechanical ventilaiton. With an optimal technique of administration the efficiency of aerosol delivery during mechanical ventilation is similar to that achieved during spontaneous breathing. Further research is needed to optimize aerosol delivery during NPPV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号