首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 328 毫秒
1.
母乳、牛乳及山羊乳脂肪酸组成的差异分析   总被引:1,自引:0,他引:1  
采用气质联用法(GC-MS)测定东北区域不同泌乳期的母乳及牛乳和山羊乳常乳脂肪酸组成,并对其组成和含量进行差异分析,旨在为母乳脂质组学及以牛羊乳为基质的婴儿配方食品提供一定的理论基础。结果表明:母乳中主要脂肪酸为棕榈酸、油酸、亚油酸等,其中油酸含量最为丰富。饱和脂肪酸(SFA)、单不饱和脂肪酸(MUFA)和多不饱和脂肪酸(PUFA)含量在不同泌乳期存在差异,其中SFA差异显著(p<0.05),初乳、过渡乳和成熟乳SFA含量分别为36.16%、37.89%、38.10%。牛乳和山羊乳主要以SFA为主,山羊乳SFA含量最高(69.07%),SFA中辛酸和癸酸是羊乳的特征脂肪酸,其含量显著高于母乳和牛乳(p<0.05)。山羊乳中中链脂肪酸(MCFA)含量最高(21.03%),是牛乳的1.5倍。其中,母乳SFA:MUFA:PUFA的比例为1.41:1.29:1,牛乳为19.12:9.98:1,山羊乳为11.14:3.98:1,山羊乳脂肪酸组成在比例上更加接近母乳。山羊乳在婴儿配方食品开发方面有更高的优势和开发空间。  相似文献   

2.
目的:比较分析普通牛、羊乳粉和有机牛、羊乳粉的脂质特点。方法:以普通牛乳粉、普通羊乳粉、有机牛乳粉和有机羊乳粉为研究对象,采用氯仿-甲醇法提取乳粉中的脂质,氨丙基硅胶固相萃取小柱分离得甘油三酯和磷脂,利用猪胰脂酶专一水解甘油三酯分子的1,3位脂肪酸得Sn-2甘油一酯,磷脂酶A2水解磷脂得Sn-2脂肪酸,然后通过气相色谱分析甘油三酯和磷脂的脂肪酸组成和含量及其位置分布,超高液相色谱联用质谱分析甘油三酯构型,高效液相色谱测定磷脂分子组成及含量和胆固醇含量。结果:羊乳粉脂质含量、甘油三酯含量和磷脂含量均高于牛乳粉,且普通乳粉较有机乳粉高;乳粉中饱和脂肪酸主要为棕榈酸,单不饱和脂肪酸主要为油酸,且普通羊乳粉含量显著高于其余三种乳粉(P<0.05);n-6系列多不饱和脂肪酸普通羊乳粉中含量最高,n-3系列多不饱和脂肪酸在有机羊乳粉中含量最高。四种乳粉Sn-2位脂肪酸为饱和脂肪酸,且月桂酸、肉豆蔻酸和棕榈酸更倾向于分布在甘油三酯Sn-2位上,棕榈酸也更倾向于分布在磷脂Sn-2位上。四种乳粉的中链甘油三酯(Medium Chain Triglycerides,MCT)主要由Ca-Ca-Ca(Ca:C10:0)和Ca-Ca-La(La:C12:0)组成,羊乳粉较牛乳粉高;中长链甘油三酯(Medium-and Long-chain Triglycerides,MLCT)含量较高的为Ca-Ca-P(P:C16:0)、Ca-Ca-O(O:C18:0)和La-M-P(M:C14:0),羊乳粉MLCT含量显著高于牛乳粉(P<0.05);LCT含量最高的为O-P-O(O:C18:0)。结论:羊乳粉的脂质比牛乳粉更易被吸收。与普通乳粉相比,有机乳粉安全更有保障,且有机乳粉含有更高的n-3 PUFA,营养价值更高。  相似文献   

3.
研究了摄食不同来源磷脂对大鼠脂质代谢及其脑内磷脂脂肪酸组成的影响。雄性SD大鼠按体重随机分为大豆油对照组(添加9%)、牛乳磷脂组(添加5%)、大豆磷脂组(添加5%)、蛋黄磷脂组(添加5%),喂食3周。检测了血清总胆固醇(TC)、甘油三酯(TG)、高密度脂蛋白胆固醇(HDL-C)、游离脂肪酸(FFA)及肝脏TC、TG、磷脂(PL)的含量,并用气相色谱法测定了脑内磷脂脂肪酸的组成变化。结果显示:与大豆油对照组相比,3种磷脂均不同程度提高了大鼠体重、脏器指数,蛋黄磷脂效果显著;3种磷脂不同程度降低了血清TC、TG和FFA含量,牛乳磷脂降低血清FFA显著,大豆磷脂降低血清TC、TG显著,蛋黄磷脂降低FFA显著,大豆磷脂显著提升了血清HDL-C含量;3种磷脂不同程度降低了肝脏TC、TG、PL含量,牛乳磷脂与大豆磷脂降低肝脏TG、TC显著,而蛋黄磷脂降低肝脏TG显著;3种磷脂对脑内磷脂脂肪酸组成的影响各不相同,牛乳磷脂显著提高了脑内磷脂饱和脂肪酸含量,而大豆磷脂和蛋黄磷脂提高了DHA等多不饱和脂肪酸含量。研究表明,3种磷脂均有降血脂、肝脂作用,以大豆磷脂作用尤为明显,大豆磷脂和蛋黄磷脂的益智作用可能优于牛乳磷脂。  相似文献   

4.
以甘油为碳源,测定了摇瓶中裂殖壶菌S31进入脂质积累期后,温度对胞内油脂脂肪酸组成以及FAS和PKS基因转录水平的影响。结果表明:当裂殖壶菌进入脂质积累阶段后,提高发酵温度到30℃会减少藻油中DHA的含量,FAS基因的转录水平比PKS基因的更高;同时,降低发酵温度到20℃会提高裂殖壶菌S31藻油DHA的含量,PKS基因的转录水平显著高于FAS基因的。实验结果表明,温度对PKS和FAS基因的转录水平有显著的影响,从而决定裂殖壶菌S31中藻油脂肪酸组成的变化。  相似文献   

5.
分析比较新疆拜城油鸡和南京土鸡鸡皮总脂质和磷脂的含量及脂肪酸组成。用溶剂提取法分别提取2 种鸡皮的总脂质和磷脂,将提取的脂质经甲酯化后,利用气相色谱-质谱分析其脂肪酸组成。结果显示,南京土鸡鸡皮总脂质含量和磷脂含量分别为35.56%和7.71%,拜城油鸡鸡皮中总脂质含量和磷脂含量分别为42.65%和8.95%,均高于南京土鸡。南京土鸡与拜城油鸡鸡皮总脂质中各含有25 种脂肪酸,主要包含油酸、亚油酸、棕榈酸、硬脂酸、棕榈烯酸;2 种鸡鸡皮磷脂中均含有10 种脂肪酸,主要包含棕榈酸、油酸、硬脂酸和亚油酸。2 种鸡的鸡皮油脂脂肪酸的种类相同,但各脂肪酸含量有所差异;脂肪酸饱和程度比例基本相似,但南京土鸡鸡皮磷脂中不饱和脂肪酸和亚油酸含量高于拜城油鸡。  相似文献   

6.
李子睦 《中国油脂》2021,46(2):36-40
以DHA营养强化鸡蛋及普通鸡蛋为原料,将鸡蛋煮熟后取出蛋黄,以体积比2∶1的氯仿-甲醇提取其中的脂质,分析总脂质含量、磷脂含量、总脂质的脂肪酸组成、磷脂的脂肪酸组成及分布以及中性脂(甘三酯和甘二酯)的脂肪酸组成及分布。结果表明:DHA营养强化鸡蛋蛋黄中的总脂质含量((29.28±1.70)%)与普通鸡蛋((32.46±0.34)%)无显著性差异(P> 0.05),总脂质中磷脂含量((102.13±1.57) mg/g)与普通鸡蛋((96.44±2.44) mg/g)无显著性差异(P> 0.05),DHA营养强化鸡蛋总脂质中DHA含量((11.14±0.18)%)远超普通鸡蛋((0.14±0.00)%),且DHA在磷脂中的含量((13.60±0.64)%)高于总脂质,在甘三酯((5.09±0.18)%)及甘二酯((1.88±1.13)%)等中性脂中含量较少;从空间位置分布来看,DHA在磷脂中各位置的分布无显著性差异,且DHA营养强化鸡蛋具有更佳的ω-3/ω-6比值。  相似文献   

7.
利用气相色谱-质谱对不同来源的牦牛乳、犏牛乳和牦牛肉脂肪酸组成及含量进行检测,以功能性脂肪酸含量为指标对牦牛乳和牦牛肉的品质进行评价。结果表明:牦牛乳、犏牛乳和牦牛肉中分别鉴定出47、46、37种脂肪酸;不同月份、海拔的牦牛乳中BCFA含量和n-6/n-3比值整体差异极显著(P <0.001),对比发现8月份采自3 500 m夏季牧场的牦牛乳品质最优;犏牛乳中富含多种功能性脂肪酸,接近牦牛乳脂肪酸组成;两种饲养方式(放牧和舍饲育肥)牦牛肉中功能性脂肪酸含量和n-6/n-3比值差异显著,放牧牦牛肉中DHA、DPA、EPA、BCFA等功能性脂肪酸含量均显著高于舍饲育肥牦牛肉,相较于舍饲育肥牦牛,放牧牦牛的牦牛肉品质更佳。  相似文献   

8.
通过饲喂奶山羊富含二十二碳六烯酸(docosahexaenoic acid,DHA)的微藻粉,获得原生态DHA羊乳(DHA含量为30 mg/100 g原料乳),然后将其制作成超高温瞬时灭菌(ultra-high temperature instantaneous sterilization,UHT)乳及全脂乳粉,同时设立人工添加富含DHA微胶囊粉的UHT乳及全脂乳粉作为对照组,在常温(25 ℃)和高温(37 ℃)下进行为期28 d的贮藏实验,研究原生态与人工添加DHA羊乳制品贮藏期脂肪酸稳定性。结果表明,与人工添加组相比,贮藏期间原生态UHT乳及全脂乳粉的DHA含量下降速率明显减缓,在UHT乳中,人工添加组乳制品DHA含量降低率在37 ℃下最高达(40.92±3.52)%(贮藏第28天),此时原生态组DHA降低率为(36.70±4.84)%。贮藏期间,原生态与人工添加DHA的UHT乳及全脂乳粉中多不饱和脂肪酸相对含量总体均下降,且与人工添加DHA的乳制品相比,原生态组中多不饱和脂肪酸相对含量更高,更易氧化生成碳链更短的脂肪酸。此外,随着贮藏期的延长,原生态DHA乳制品组中的油脂氧化指标过氧化值和酸价上升速率明显低于人工添加DHA乳制品组。综上,本实验可为制备富含DHA的天然奶制品提供理论参考。  相似文献   

9.
研究了不同糖添加量(3%、6%、9%、12%,m/m)对广式腊肠脂质降解的影响规律。将广式腊肠中瘦肉和肥丁分别进行研究,利用固相萃取技术将脂质分为中性脂肪、磷脂和游离脂肪酸,采用气质联用分析中性脂肪和磷脂的脂肪酸组成、游离脂肪酸的组成及含量。结果表明:磷脂是广式腊肠中脂质降解的主要成分,中性脂肪也对游离脂肪酸的释放有一定作用;瘦肉部分的脂质是腊肠脂质降解的主要部分。糖添加量对中性脂肪和磷脂的多不饱和脂肪酸组成比例具有显著影响,糖添加量低时多不饱和脂肪酸组成比例高,尤其是对瘦肉部分的磷脂影响最为显著,糖添加量为12%时其比例为17.88%,而添加量为6%和3%时分别变为36.70%和33.94%;游离脂肪酸含量随糖添加量的减少而降低,表明糖对腊肠的脂质降解具有一定促进作用。由于多不饱和脂肪酸极易氧化导致其组成比例较低。  相似文献   

10.
探究裂殖壶藻(Schizochytrium sp.)A3-9在不同发酵条件下生物量和脂肪酸含量的变化规律。结果显示,初始葡萄糖含量90 g/L,碳氮比8时最有利于裂殖壶藻生物量积累,此时生物量可达38.12 g/L,较对照组提高了104.59%;装液量220 m L/500 m L,柠檬酸添加量1.6 g/L,碳氮比23时总脂肪酸的积累可达47.16 g/100 g藻粉,较对照组提高了40.25%。不同发酵条件下裂殖壶藻胞内脂肪酸的代谢流量分布分析显示,初始葡萄糖含量90 g/L,碳氮比8,装液量60 m L/500 m L,柠檬酸和苹果酸添加量1.6 g/L时最有利于乙酰辅酶A(CoA)流入聚酮合酶(PKS)途径合成不饱和脂肪酸,此时不饱和脂肪酸与饱和脂肪酸含量之比可达1.15,相比对照组提高了21.28%;而当碳氮比14.75,装液量220 m L/500 m L时二十二碳六烯酸(DHA)与二十二碳五烯酸(DPA)含量之比可达6.82,较对照组提高了3.02%。  相似文献   

11.
12.
为了研究不同的甲酯化方法对裂壶藻产油脂肪酸的影响,本文通过对裂壶藻进行发酵培养得到纯藻体,再经过酶法破壁、冷冻干燥得到干藻体后采用索氏提取法提取油脂。运用酸法、碱法和三氟化硼法三种甲酯化方法对藻油进行处理,基于气相色谱-质谱联用(GC-MS)技术分析了藻油中DHA(二十二碳六烯酸)等脂肪酸的组成和含量。结果表明:酸法、碱法、三氟化硼法分别鉴定出11种、19种和12种脂肪酸,占裂壶藻藻油总量的89.50%、97.88%和90.12%。其中酸法酯化的藻油中DHA占脂肪酸总量的38.89%;碱法酯化的藻油中DHA占脂肪酸总量的46.76%;三氟化硼法酯化的藻油中DHA占脂肪酸总量的40.54%。所以,碱法相较于酸法和三氟化硼法有明显的优势,更适合用于裂壶藻藻油的脂肪酸分析。进一步对碱法的甲酯化温度进行梯度实验,结果表明温度为55℃时,DHA的相对含量为47.45%,藻油的甲酯化效果最好。这一研究对长链多不饱和脂肪酸的检测鉴定有着重要的意义。  相似文献   

13.
Although the effect of lactation stage is similar, the responses of milk yield and composition (fat and protein contents) to different types of lipid supplements differ greatly between goats and cows. Milk fat content increases with almost all studied fat supplements in goats but not in cows. However, the response of milk fatty acid (FA) composition is similar, at least for major FA, including conjugated linoleic acid (CLA) in goats and cows supplemented with either protected or unprotected lipid supplements. Goat milk CLA content increases sharply after either vegetable oil supplementation or fresh grass feeding, but does not change markedly when goats receive whole untreated oilseeds. Important interactions are observed between the nature of forages and of oil supplements on trans-10 and trans-11 C18:1 and CLA. Peculiarities of goat milk FA composition and lipolytic system play an important role in the development of either goat flavor (release of branched, medium-chain FA) or rancidity (excessive release of butyric acid). The lipoprotein lipase (LPL) activity, although lower in goat than in cow milk, is more bound to the fat globules and better correlated to spontaneous lipolysis in goat milk. The regulation of spontaneous lipolysis differs widely between goats and cows. Goat milk lipolysis and LPL activity vary considerably and in parallel across goat breeds or genotypes, and are low during early and late lactation, as well as when animals are underfed or receive a diet supplemented with protected or unprotected vegetable oils. This could contribute to decreases in the specific flavor of goat dairy products with diets rich in fat.  相似文献   

14.
Fish oil is used as a ration additive to provide n-3 fatty acids to dairy cows. Fish do not synthesize n-3 fatty acids; they must consume microscopic algae or other algae-consuming fish. New technology allows for the production of algal biomass for use as a ration supplement for dairy cattle. Lipid encapsulation of the algal biomass protects n-3 fatty acids from biohydrogenation in the rumen and allows them to be available for absorption and utilization in the small intestine. Our objective was to examine the use of algal products as a source for n-3 fatty acids in milk. Four mid-lactation Holsteins were assigned to a 4×4 Latin square design. Their rations were supplemented with 1× or 0.5× rumen-protected (RP) algal biomass supplement, 1× RP algal oil supplement, or no supplement for 7 d. Supplements were lipid encapsulated (Balchem Corp., New Hampton, NY). The 1× supplements provided 29g/d of docosahexaenoic acid (DHA), and 0.5× provided half of this amount. Treatments were analyzed by orthogonal contrasts. Supplementing dairy rations with rumen-protected algal products did not affect feed intake, milk yield, or milk component yield. Short- and medium-chain fatty acid yields in milk were not influenced by supplements. Both 0.5× and 1× RP algae supplements increased daily milk fat yield of DHA (0.5 and 0.6±0.10g/d, respectively) compared with 1× RP oil (0.3±0.10g/d), but all supplements resulted in milk fat yields greater than that of the control (0.1±0.10g/d). Yield of trans-18:1 fatty acids in milk fat was also increased by supplementation. Trans-11 18:1 yield (13, 20, 27, and 15±3.0g/d for control, 0.5× RP algae, 1× RP algae, and 1× RP oil, respectively) was greater for supplements than for control. Concentration of DHA in the plasma lipid fraction on d 7 showed that the DHA concentration was greatest in plasma phospholipid. Rumen-protected algal biomass provided better DHA yield than algal oil. Feeding lipid-encapsulated algae supplements may increase n-3 content in milk fat without adversely affecting milk fat yield; however, preferential esterification of DHA into plasma phospholipid may limit its incorporation into milk fat.  相似文献   

15.
Soft goat cheese was fortified with four levels of purified fish oil (0, 60, 80, and 100 g fish oil per 3600 g goat milk) prior to curd formation to deliver high levels of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) per serving. The cheese was evaluated for proximate composition, EPA+DHA content, oxidative stability, color, pH, and consumer acceptability. The cheese was partially vacuum packed and stored at 2 °C for four weeks. The fat content was significantly (p < 0.05) higher in the fortified treatments compared to the control, but was not significantly different among fortified treatments. Likewise, EPA+DHA contents were not significantly different among fortified samples, averaging 127 mg EPA+DHA per 28 g serving. No significant lipid oxidation was detected by thiobarbituric acid reactive substances (TBARS) or hexanal and propanal headspace analyses over the four week refrigerated shelf-life study for any treatments. The fortified cheeses were all liked 'moderately' by consumers (n = 105) for overall acceptability, although the 60 g fortification level did rate significantly higher. The control cheese and the 60 g fortification level had no significant differences in consumer purchase intent. These results demonstrate that fortification levels of up to 127 mg EPA+DHA per serving may be added to soft cheese without negatively affecting shelf-life or consumer purchase intent. PRACTICAL APPLICATION: Omega-3 fatty acids have been shown to have strong associations with health and well-being, and fish oil is a rich source of these fatty acids. In this study, goat cheese was successfully fortified to deliver 127 mg omega-3 fatty acids per 28 g serving without affecting shelf life or consumer purchase intent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号