首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
High-resolution spectroscopic observations around the Hα line and BVRI photometry of the eclipsing short-period RS CVn star UV Leo are presented. The simultaneous light-curve solution and radial velocity-curve solution led to the following values of the global parameters of the binary: temperatures   T 1= 6000 ± 100 K  and   T 2= 5970 ± 20 K  ; masses   M 1= 0.976 ± 0.067 M  and   M 2= 0.931 ± 0.052 M  ; separation   a = 3.716 ± 0.048 R  ; orbital inclination     ; radii   R 1= 1.115 ± 0.052 R  and   R 2= 1.078 ± 0.051 R  ; equatorial velocities   V 1= 98.8 ± 2.3 km s−1  and   V 2= 89.6 ± 2.7 km s−1  . These results lead to the conclusion that the two components of UV Leo are slightly oversized for their masses and lie within the main-sequence band on the mass–radius diagram, close to the isochrone 9 × 1010 yr.  相似文献   

2.
We present the discovery of the widest known ultracool dwarf–white dwarf binary. This binary is the first spectroscopically confirmed widely separated system from our target sample. We have used the Two-Micron All-Sky Survey (2MASS) and SuperCOSMOS archives in the southern hemisphere, searching for very widely separated ultracool dwarf–white dwarf binaries, and find one common proper motion system, with a separation of 3650–5250 au at an estimated distance of 41–59 pc, making it the widest known system of this type. Spectroscopy reveals 2MASS J0030−3740 is a DA white dwarf with   T eff= 7600 ± 100 K, log( g ) = 7.79–8.09  and   M WD= 0.48–0.65 M  . We spectroscopically type the ultracool dwarf companion (2MASS J0030−3739) as M9 ± 1 and estimate a mass of  0.07–0.08 M,  T eff= 2000–2400 K  and  log( g ) = 5.30–5.35  , placing it near the mass limit for brown dwarfs. We estimate the age of the system to be >1.94 Gyr (from the white dwarf cooling age and the likely length of the main-sequence lifetime of the progenitor) and suggest that this system and other such wide binaries can be used as benchmark ultracool dwarfs.  相似文献   

3.
The 'All Sky Automated Survey' (ASAS) photometric observations of LS 1135, an O-type single-lined binary (SB1) system with an orbital period of 2.7 d, show that the system is also eclipsing performing a numerical model of this binary based on the Wilson–Devinney method. We obtained an orbital inclination     . With this value of the inclination, we deduced masses   M 1∼ 30 ± 1 M  and   M 2∼ 9 ± 1 M  , and radii   R 1∼ 12 ± 1 R  and   R 2∼ 5 ± 1 R  for primary and secondary components, respectively. Both the components are well inside their respective Roche lobes. Fixing the T eff of the primary to the value corresponding to its spectral type (O6.5V), the T eff obtained for the secondary component corresponds approximately to a spectral type of B1V. The mass ratio   M 2/ M 1∼ 0.3  is among the lowest known values for spectroscopic binaries with O-type components.  相似文献   

4.
The subdwarf B (sdB) star KPD 0422 + 5421 was discovered to be a single-lined spectroscopic binary with a period of P  = 0.090 1795 ± (3 × 10−7) d (2 h 10 min). The U B light curves display an ellipsoidal modulation with amplitudes of ≈ 0.02 mag. The sdB star contributes nearly all of the observed flux. This and the absence of any reflection effect suggest that the unseen companion star is small (i.e. R comp ≈ 0.01 R) and therefore degenerate. We modelled the U B light curves and derived i  = 78.05° ± 0.50° and a mass ratio of q  =  M comp/ M sdB = 0.87 ± 0.15. The sdB star fills 69 per cent of its Roche lobe. These quantities may be combined with the mass function of the companion [ f ( M ) = 0.126 ± 0.028 M] to derive M sdB = 0.72 ± 0.26 M and M comp = 0.62 ±  0.18 M. We used model spectra to derive the effective temperature, surface gravity and helium abundance of the sdB star. We found T eff = 25 000 ± 1500 K, log g  = 5.4 ± 0.1 and [He/H] = −1.0. With a period of 2 h 10 min, KPD 0422 + 5421 has one of the shortest known orbital periods of a detached binary. This system is also one of only a few known binaries that contain a subdwarf B star and a white dwarf. Thus KPD 0422 + 5421 represents a relatively unobserved, and short-lived, stage of binary star evolution.  相似文献   

5.
We critically re-examine the available data on the spectral types, masses and radii of the secondary stars in cataclysmic variables (CVs) and low-mass X-ray binaries (LMXBs), using the new catalogue of Ritter &38; Kolb as a starting point. We find there are 55 reliable spectral type determinations and only 14 reliable mass determinations of CV secondary stars (10 and 5, respectively, in the case of LMXBs). We derive new spectral type–period, mass–radius, mass–period and radius–period relations, and compare them with theoretical predictions. We find that CV secondary stars with orbital periods shorter than 7–8 h are, as a group, indistinguishable from main-sequence stars in detached binaries. We find that it is not valid, however, to estimate the mass from the spectral type of the secondary star in CVs or LMXBs. We find that LMXB secondary stars show some evidence for evolution, with secondary stars which are slightly too large for their mass. We show how the masses and radii of the secondary stars in CVs can be used to test the validity of the disrupted magnetic braking model of CV evolution, but we find that the currently available data are not sufficiently accurate or numerous to allow such an analysis. As well as considering secondary star masses, we also discuss the masses of the white dwarfs in CVs, and find mean values of M  = 0.69 ± 0.13 M below the period gap, and M  = 0.80 ± 0.22 M above the period gap.  相似文献   

6.
We present a detailed calculation of the evolution of low-mass (<0.25 M) helium white dwarfs. These white dwarfs (the optical companions to binary millisecond pulsars) are formed via long-term, low-mass binary evolution. After detachment from the Roche lobe, the hot helium cores have a rather thick hydrogen layer with mass between 0.01 and 0.06 M. As a result of mixing between the core and outer envelope, the surface hydrogen content ( X surf) is 0.5–0.35 , depending on the initial value of the heavy element Z and the initial secondary mass. We found that the majority of our computed models experience one or two hydrogen shell flashes. We found that the mass of the helium dwarf in which the hydrogen shell flash occurs depends on the chemical composition. The minimum helium white dwarf mass in which a hydrogen flash takes place is 0.213 M ( Z =0.003), 0.198 M ( Z =0.01), 0.192 M ( Z =0.02) or 0.183 M ( Z =0.03). The duration of the flashes (independent of chemical composition) is between a few ×106 and a few ×107 yr. In several flashes the white dwarf radius will increase so much that it forces the model to fill its Roche lobe again. Our calculations show that the cooling history of the helium white dwarf depends dramatically on the thickness of the hydrogen layer. We show that the transition from a cooling white dwarf with a temporarily stable hydrogen-burning shell to a cooling white dwarf in which almost all residual hydrogen is lost in a few thermal flashes (via Roche lobe overflow) occurs between 0.183 and 0.213 M (depending on the heavy element value).  相似文献   

7.
The amount of mass contained in low-mass objects is investigated anew. Instead of using a mass–luminosity relation to convert a luminosity function to a mass function, I predict the mass–luminosity relation from assumed mass functions and the luminosity functions of Jahreiss & Wielen and Gould, Bahcall & Flynn. Comparison of the resulting mass–luminosity relations with data for binary stars constrains the permissible mass functions. If the mass function is assumed to be a power law, the best-fitting slope lies either side of the critical slope, α =−2, below which the mass in low-mass objects is divergent, depending on the luminosity function adopted. If these power-law mass functions are truncated at 0.001 M, the contribution to the local density from stars lies between 0.013 and 0.10 M pc−3 depending on the mass at which the mass function is normalized and the adopted value of α . Recent dynamical estimates of the local mass density rule out stellar mass densities above ∼0.05 M pc−3. Hence, power laws steeper than α =−2 that extend down to 0.001 M are allowed only if one adopts an implausible normalization of the mass function. If the mass function is generalized from a power law to a low-order polynomial in log( M ), the mass in stars with M <0.1 M is either negligible or strongly divergent, depending on the order of the polynomial adopted.  相似文献   

8.
WD 1704+481 is a visual binary in which both components are white dwarfs. We present spectra of the H α line of both stars which show that one component (WD 1704+481.2=Sanduleak B=GR 577) is a close binary with two white dwarf components. Thus, WD 1704+481 is the first known triple degenerate star. From radial velocity measurements of the close binary we find an orbital period of 0.1448 d, a mass ratio, q M bright M faint, of 0.70±0.03 and a difference in the gravitational redshifts of 11.5±2.3 km s−1. The masses of the close pair of white dwarfs predicted by the mass ratio and gravitational redshift difference combined with theoretical cooling curves are 0.39±0.05 and 0.56±0.07 M. WD 1704+481 is therefore also likely to be the first example of a double degenerate in which the less massive white dwarf is composed of helium and the other white dwarf is composed of carbon and oxygen.  相似文献   

9.
The purpose of this work is to explore the evolution of helium-core white dwarf stars in a self-consistent way with the predictions of detailed non-grey model atmospheres and element diffusion. To this end, we consider helium-core white dwarf models with stellar masses of 0.406, 0.360, 0.327, 0.292, 0.242, 0.196 and 0.169 M and follow their evolution from the end of mass-loss episodes, during their pre-white dwarf evolution, down to very low surface luminosities.
We find that when the effective temperature decreases below 4000 K, the emergent spectrum of these stars becomes bluer within time-scales of astrophysical interest. In particular, we analyse the evolution of our models in the colour–colour and in the colour–magnitude diagrams and find that helium-core white dwarfs with masses ranging from ∼0.18 to 0.3 M can reach the turn-off in their colours and become blue again within cooling times much less than 15 Gyr and then remain brighter than M V ≈16.5 . In view of these results, many low-mass helium white dwarfs could have had enough time to evolve to the domain of collision-induced absorption from molecular hydrogen, showing blue colours.  相似文献   

10.
We present the results of a proper motion survey of the Hyades to search for brown dwarfs, based on UKIRT Deep Sky Survey (UKIDSS) and Two-Micron All Sky Survey (2MASS) data. This survey covers  ∼275 deg2  to a depth of   K ∼ 15  mag, equivalent to a mass of  ∼0.05 M  assuming a cluster age of 625 Myr. The discovery of 12 L dwarf Hyades members is reported. These members are also brown dwarfs, with masses between  0.05 < M < 0.075 M  . A high proportion of these L dwarfs appear to be photometric binaries.  相似文献   

11.
A spectroscopic study of the binary Wolf–Rayet (WR)+O system WR 145 is performed, in order to determine the radial velocity orbits of the individual stars, the angle of orbital inclination and the stellar masses. The emission and absorption components are separated from the original spectra, allowing us to confirm the spectral classification WN 7o/CE of the hybrid WR component and to derive a spectral classification O7V((f)) for the O star. A study of the wind-collision properties is performed. Fitting the radial velocity and full width at half-maximum of the excess emission with Lührs' model results in an inclination angle of   i = 63°  , leading to estimates of the stellar masses:   M WR= 18 M  and   M O= 31 M  . Both of these masses are compatible with those of other stars of similar types.  相似文献   

12.
We present light curves of four binary subdwarf B stars (sdB), Ton 245, Feige 11, PG 1432+159 and PG 1017−086. We also present new spectroscopic data for PG 1017−086 from which we derive its orbital period,   P =0.073 d  , and the mass function,   f m=0.0010±0.0002 M.  This is the shortest period for an sdB binary measured to date. The values of P and f m for the other sdB binaries have been published elsewhere. We are able to exclude the possibility that the unseen companion stars to Ton 245, Feige 11 and PG 1432+159 are main-sequence stars or subgiant stars from the absence of a sinusoidal signal, which would be caused by the irradiation of such a companion star, i.e. they show no reflection effect. The unseen companion stars in these binaries are likely to be white dwarf stars. In contrast, the reflection effect in PG 1017−086 is clearly seen. The lack of eclipses in this binary combined with other data suggests that the companion is a low-mass M-dwarf or, perhaps, a brown dwarf.  相似文献   

13.
In this study we present and re-analyse the historical, 1889–1998, light curve (LC) of the eclipsing symbiotic binary AR Pav. For the first time, we show that the timing of mid-points of eclipses observed during a quiescent phase obeys a quadratic ephemeris, with an initial orbital period P 0=605.18 d and a rate of period change     .
We determined a distance to the system of 5.8±1.5 kpc, the mass ratio of the giant to the hot star, M g M h=0.4±0.1, the mass of the giant, M g=1.8+1/−0.5 M and its radius, R g=167±15 R.
During quiescence, the LC has characteristic features similar to those observed in cataclysmic variables (CVs). It can be well reproduced by a model of a large accretion disc surrounding the hot star. However, it is probable that the geometry of the transferred material in the Roche lobe of the accretor in AR Pav is different from that of CVs.
During active phases the shape of the LC changes considerably. A complex wave-like variation developed as a function of the orbital phase with an amplitude of ∼1 mag. It is interpreted in terms of a collisionally heated emission region located on the giant surface and arising from the hot star eruption.  相似文献   

14.
We report the discovery of the nearby  ( d = 24 pc)  HD 75767 as an eight billion year old quadruple system consisting of a distant M dwarf pair, HD 75767 C–D, in orbit around the known short-period   P = 10.25 d  single-lined binary HD 75767 A–B, the primary of which is a solar-like G star. On the reasonable assumption of synchronous orbital rotation as well as rotational and orbital coplanarity for the inner pair, we get   M B= 0.96 M  for the unseen HD 75767 B, that is, the case of a massive white dwarf. Upon future evolution, mass transfer towards HD 75767 B will render the   M A= 0.96 M  G-type primary, now a turnoff star, to become a helium white dwarf of   M A∼ 0.33 M  . Depending on the mass accretion rate, accretion efficiency and composition of the massive white dwarf, this in turn may result in a collapse of HD 75767 B with the formation of a millisecond pulsar, i.e. the creation of a low-mass binary pulsar (LMBP), or, instead, a Type Ia supernova explosion and the complete disruption of HD 75767 B. Irrespective of which scenario applies, we point to the importance of the distant M dwarfs as the likely agents for the formation of the inner, short-period HD 75767 A–B pair, and hence a path that particularly avoids preceding phases of common envelope evolution.  相似文献   

15.
We have used the radial velocity variations of two sdB stars previously reported to be binaries to establish their orbital periods. They are PG 0940+068 ( P =8.33 d) and PG 1247+554 ( P =0.599 d). The minimum masses of the unseen companions, assuming a mass of 0.5 M for the sdB stars, are 0.090±0.003 M. for PG 1247+554 and 0.63±0.02 M for PG 0940+068. The nature of the companions is not constrained further by our data.  相似文献   

16.
The concept of Roche lobe overflow is fundamental to the theory of interacting binaries. Based on potential theory, it is dependent on all the relevant material corotating in a single frame of reference. Therefore if the mass losing star is asynchronous with the orbital motion or the orbit is eccentric, the simple theory no longer applies and no exact analytical treatment has been found. We use an analytic approximation whose predictions are largely justified by smoothed particle hydrodynamic simulations (SPH). We present SPH simulations of binary systems with the same semi-major axis   a = 5.55 R  , masses   M 1= 1 M, M 2= 2 M  and radius   R 1= 0.89 R  for the primary star but with different eccentricities   e = 0.4, 0.5, 0.6  and 0.7. In each case the secondary star is treated as a point mass. When   e = 0.4  no mass is lost from the primary while at   e = 0.7  catastrophic mass transfer, partly through the L2 point, takes place near periastron. This would probably lead to common-envelope evolution if star 1 were a giant or to coalescence for a main-sequence star. In between, at   e ≥ 0.5  , some mass is lost through the L1 point from the primary close to periastron. However, rather than being all accreted by the secondary, some of the stream appears to leave the system. Our results indicate that the radius of the Roche lobe is similar to circular binaries when calculated for the separation and angular velocity at periastron. Part of the mass loss occurs through the L2 point.  相似文献   

17.
A new high-quality set of orbital parameters for the O-type spectroscopic binary HD 93205 has been obtained combining échelle and coudé CCD observations. The radial velocity orbits derived from the He  ii λ 4686 Å (primary component) and He  i λ 4471 Å (secondary component) absorption lines yield semi-amplitudes of 133±2 and 314±2 km s−1 for each binary component, resulting in minimum masses of 31 and 13 M ( q =0.42) . We also confirm for the binary components the spectral classification of O3 V+ O8 V previously assigned. Assuming for the O8 V component a 'normal' mass of 22–25 M we would derive for the primary O3 V a mass of 'only' 52–60 M and an inclination of about 55° for the orbital plane. We have also determined for the first time a period of apsidal motion for this system, namely 185±16 yr using all available radial velocity data sets of HD 93205 (from 1975 to 1999). Phase-locked variations of the X-ray emission of HD 93205 consisting of a rise of the observed X-ray flux near periastron passage are also discussed.  相似文献   

18.
The first orbital solution for the spectroscopic pair in the multiple star system σ Scorpii, determined from measurements with the Sydney University Stellar Interferometer, is presented. The primary component is of β Cephei variable type and has been one of the most intensively studied examples of its class. The orbital solution, when combined with radial velocity results found in the literature, yields a distance of  174+23−18 pc  , which is consistent with, but more accurate than the Hipparcos value. For the primary component we determine  18.4 ± 5.4 M, −4.12 ± 0.34 mag  and  12.7 ± 1.8 R  for the mass, absolute visual magnitude and radius, respectively. A B1 dwarf spectral type and luminosity class for the secondary is proposed from the mass determination of  11.9 ± 3.1 M  and the estimated system age of 10 Myr.  相似文献   

19.
High-resolution spectroscopic observations around the Hα line of the binary star QX Cas covering the whole orbital period are presented. Our radial velocity solution, the first ever determined, requires an eccentric orbit with the following orbital parameters: eccentricity,   e = 0.22 ± 0.01  ; longitude of periastron,  ω= 45°± 5°  ; semi-amplitudes of the radial velocity curves of the primary and secondary stars,   K 1 sin  i = 125.8 ± 0.9 km s−1  and   K 2 sin  i = 144.8 ± 1.1 km s−1  ; gamma velocity,   V 0= 65.1 ± 0.5 km s−1  ; and mass ratio,   q = 0.869 ± 0.013  . The corresponding lower limits of the masses of the components and their separation are         , and   a sin  i = 31.34 ± 0.48 R  .  相似文献   

20.
We study the full evolution of low-mass white dwarfs with helium and oxygen cores. We revisit the age dichotomy observed in many white dwarf companions to millisecond pulsar on the basis of white dwarf configurations derived from binary evolution computations. We evolve 11 dwarf sequences for helium cores with final masses of 0.1604, 0.1869, 0.2026, 0.2495, 0.3056, 0.3333, 0.3515, 0.3844, 0.3986, 0.4160 and  0.4481 M  . In addition, we compute the evolution of five sequences for oxygen cores with final masses of 0.3515, 0.3844, 0.3986, 0.4160 and  0.4481 M  . A metallicity of   Z = 0.02  is assumed. Gravitational settling, chemical and thermal diffusion are accounted for during the white dwarf regime. Our study reinforces the result that diffusion processes are a key ingredient in explaining the observed age and envelope dichotomy in low-mass helium-core white dwarfs, a conclusion we arrived at earlier on the basis of a simplified treatment for the binary evolution of progenitor stars. We determine the mass threshold where the age dichotomy occurs. For the oxygen white dwarf sequences, we report the occurrence of diffusion-induced, hydrogen-shell flashes, which, as in the case of their helium counterparts, strongly influence the late stages of white dwarf cooling. Finally, we present our results as a set of white dwarf mass–radius relations for helium and oxygen cores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号