首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
采用厌氧/缺氧序批式反应器(SBR)在不同碳源(乙酸钠、丙酸钠、ρ(乙酸钠)、ρ(丙酸钠)=2∶1和ρ(乙酸钠)∶ρ(丙酸钠)=1∶2)条件下成功培养反硝化聚磷菌(DPB),并利用静态试验研究不同碳源培养的DPB对电子受体的适应性。结果表明,不同碳源条件下DPB系统都能利用硝酸盐和亚硝酸盐脱氮除磷,但利用次序及效率不同:仅硝酸盐为电子受体时,乙酸盐含量越高,反应过程中污泥的亚硝酸盐累积量(0~6.60mg/g)和反硝化速率越高(4.02~8.58mg/(g·h)),而除磷率越低(81.1%~91.9%);混合电子受体时吸磷总量、吸磷速率、除磷率均下降,且乙酸盐含量越高其除磷率(53.2%~73.9%)和亚硝酸盐去除率越低(34.7%~86.4%),丙酸盐为主的DPB系统可同步利用硝酸盐和亚硝酸盐,而乙酸盐为主的DPB系统在硝酸盐消耗将尽时亚硝酸盐才被用于反硝化吸磷。  相似文献   

2.
pH对以亚硝酸盐为电子受体反硝化除磷的影响   总被引:2,自引:0,他引:2  
利用驯化成功的反硝化聚磷污泥以SBR进行试验,研究pH对反硝化除磷的影响,比较不同pH下厌氧释磷过程中主要储能物质的变化,探讨产生不同除磷效果的原因,考察典型周期内系统的运行效果.研究结果表明:除磷效果与pH(pH=6~8)成正相关,当pH为8时,颗粒污泥最大比厌氧释磷速率和最大比缺氧吸磷速率分别为20.95 mg/(g.h)和23.29 mg/(g·h);厌氧段聚羟基丁酸(PHB)质量分数升高到62.87 mg/g,出水TP质量浓度为1.47mg/L;随着pH升高,厌氧反应吸收的乙酸、合成的PHB质量分数都随之升高,乙酸的吸收率和聚磷分解率变化趋势较相近;当pH超过8后,易形成磷沉淀,除磷率下降.  相似文献   

3.
为了提高反硝化除磷工艺的脱氮除磷效率,以反硝化除磷污泥为研究对象,采用静态试验进行对比研究,考察碳源浓度对缺氧反硝化聚磷的影响.结果表明:当缺氧段初始碳源浓度为10.0 mg/L时,亚硝酸盐积累严重,反硝化聚磷受到抑制;当缺氧段初始碳源浓度由24.6 mg/L上升至176.8 mg/L时,随着碳源浓度的增加,反硝化速率...  相似文献   

4.
在磷技强化生物除术的基础上,对反硝化聚磷菌和反硝化聚糖菌的反硝化能力对生物除磷的影响进行了总结分析。在强化生物除磷系统中,缺氧条件下存在反硝化聚磷菌和反硝化聚糖菌,会对聚磷菌富集和系统除磷产生影响,同时研究发现碳源种类、电子受体类型、进水C/N、污泥龄和pH值是反硝化除磷的影响因素。乙酸钠为理想碳源、以NO~-_3—N为理想电子受体、C/N值的理想比值为4~5、控制污泥龄最佳范围是10~12d、pH值的最佳控制范围是7~8,反硝化除磷效果好。  相似文献   

5.
利用自培养硝化污泥与实验室筛选的1株反硝化细茵共培养形成共生污泥,构建膜生物反应器(MBR)单一反应体系同步硝化反硝化系统,得到系统良好同步硝化反硝化曝气量和污泥浓度的最优条件.由试验结果可知:在混合污泥质量浓度(MLSS)6.0~10.0g/L时,调节曝气量,可以使单污泥同步硝化反硝化总氮(TN)去除率达到85%以上.不同MLSS下,达到最高TN去除率的最佳曝气量随着MLSS增高而向高曝气量偏移.随着MLSS增高,响应因子F变小,由曝气量的变化而引起的TN去除率变化明显变缓,表示MLSS对O2传递的缓冲能力越强.在MLSS为8g/L条件下,低负荷比较容易达到较高的TN去除率,而高负荷下需要更高的曝气量以获得高的TN去除率,系统适合的NH4+-N负荷范围0~0.30 kg/(m3·d).MLSS≥3.0g/L,出水化学需氧量(COD)低于50 mg/L,COD大部分贡献于反硝化所需C源.单一反应体系同步硝化反硝化系统能对负荷的改变作出及时的回应,整体上运行比较稳定.  相似文献   

6.
自养硝化与异养反硝化污泥膜污染特性的对比   总被引:1,自引:0,他引:1  
以同步脱氮除磷连续流膜生物反应器小试稳定运行时的污泥为考查对象,采用序批式过滤试验对比考查硝化污泥与反硝化污泥的污染特性,并对不同电子供体下反硝化污泥的污染机理进行分析与探讨.研究结果表明:在25℃下乙酸作为电子供体下的反硝化速率(以VSS计)为13.8 mg/(g·h),高于乙醇的10.2 mg/(g·h)和甲醇的3.4mg/(g·h);反硝化污泥相对于硝化污泥溶解性微生物产物(soluble microbial product,SMP)中蛋白质类物质在<1 kDa和> 100 kDa范围内含量的增多,成为导致污泥混合液中溶解性物质阻力增大的主要因素,从而增大溶解性物质在膜孔内部的堵塞的阻力,其中以甲醇为电子供体时的反硝化过程最为明显.反硝化过程污泥产生的胞外聚合物(extracellular polymeric substances,EPS)相对于硝化过程有所降低,且EPS中糖类与蛋白质类物质的相对疏水性的降低成为混合液中悬浮颗粒物质(suspend solids,SS)阻力降低的主要因素;硝化污泥与3种电子供体下产生的EPS相对分子质量分布上略有不同,但是傅里叶红外光谱(Fourier transform infrared spectroscopy,FT-IR)对EPS官能团的监测表明硝化过程与3种电子供体在反硝化过程中产生的EPS主要化学物质组成并没有发生变化,以乙酸为电子供体下反硝化过程后污泥的修正污染指数(modified fouling index,MFI)最小.  相似文献   

7.
不同外碳源对生物反硝化影响的研究   总被引:1,自引:1,他引:0  
针对城镇污水处理中碳源不足影响系统脱氮能力的问题,分别以乙酸钠、葡萄糖、甲醇作为外源性碳源,考察各碳源对活性污泥脱氮能力的影响。研究结果表明,在乙酸钠投加量分别为50、100、200mg/L条件下,NO3--N去除率分别为68.8%、85.8%、100%;在葡萄糖投加量为50、100、200mg/L的条件下NO3--N去除率分别为47.3%、64.3%、76.2%;甲醇有一定的滞后性,在投加初期对反硝化能力并没有明显的促进作用。由试验结果可知,乙酸钠可以作为高效外源性碳源用作城镇污水脱氮除磷。  相似文献   

8.
为提高生活污水传统处理工艺反硝化脱氮能力并在系统内部实现污泥减量,设计水解酸化-缺氧-好氧(H-A-O)生物脱氮及污泥减量组合工艺。试验采用连续运行方式,以实际生活污水为对象,进水化学需氧量(COD)为220~410 mg/L,进水NH4+-N质量浓度为36~58 mg/L,硝化液回流比(r)为300%。试验结果表明:水解酸化作用使原水的可生化性提高60%;系统在无外加碳源和碱度条件下,COD,NH14+-N和TN的去除率分别达到90%,95%和74%,其中总氮(TN)去除效果提高12%;当以污泥水解酸化出水和生活污水作为反硝化碳源时,最大NO3--N反硝化速率分别为0.75 mg/min和0.66 mg/min;H-A-O系统利用水解酸化作用实现剩余污泥减量为37%,同时提高系统的脱氮效果。  相似文献   

9.
为了解处理生活污水的强化生物除磷(EBPR)系统的除磷和脱氮特性,采用SBR接种普通活性污泥,通过逐步提高进水COD浓度的方式,结合短污泥龄控制,实现了EBPR系统的快速启动,并对启动后系统的脱氮除磷特性进行了研究.试验结果表明:当进水COD浓度由200 mg/L左右逐步提高至500 mg/L左右时,29 d可实现EBPR系统的启动,此后30 d内出水磷浓度稳定维持在0.5 mg/L以下,磷去除率平均达99.4%.该系统还可长期高效稳定地用于高磷污水(含磷40mg/L)的处理.成功启动后的EBPR系统内聚磷菌(PAOs)为优势菌,占全菌总数的34%±3%,但也存在硝化反硝化菌和聚糖菌.在EBPR系统稳定运行时的好氧段,PAOs吸磷的同时伴随着脱氮菌群的同步硝化反硝化(SND)作用,使得平均总无机氮(TIN)损失达7.6 mg/L,系统总氮(TN)去除率在70%左右.EBPR系统内除磷耦合同步硝化反硝化,可实现污水的脱氮除磷.  相似文献   

10.
低温对固体碳源填充床反硝化的影响   总被引:3,自引:0,他引:3  
为固体碳源反硝化工艺的实际应用提供理论和技术参数,采用一种淀粉基类的可生物降解聚合物作为反硝化微生物的固体碳源和生物膜载体反硝化脱氮,主要考察了低温对填充床反硝化性能的影响.试验结果表明: 8~10℃的低温下,进水硝酸氮浓度在60~80 mg·L-1之间时,反硝化速率为2.5~4.5 mg·(L·h)-1, 去除率低于20%, 均比常温下有明显的降低;在水力负荷9~12 cm·h-1之间时,反硝化速率与水力负荷成正比;在10~15 ℃范围内,温度对反硝化率的影响比常温时要大,温度常数K=0.046.  相似文献   

11.
碳源对反硝化除磷的影响   总被引:6,自引:0,他引:6  
文章研究碳源对反硝化除磷的影响。试验结果表明:反硝化除磷菌最大放磷量与碳源有关,当ρCOD>800 mg/L时,最大放磷量达到50 mg/L,而ρCOD<200 mg/L时,反硝化除磷菌的最大放磷量还不到5 mg/L;反硝化除磷菌最大放磷量所需时间也与碳源有关,随着COD质量浓度的降低,放磷所需时间也在减少,当COD的质量浓度从440~110 mg/L时,所需时间则从120~10 min。  相似文献   

12.
采用短期静态试验和长期前置反硝化SBR工艺处理含苯酚生活污水。研究结果表明:随着苯酚质量浓度(0~175 mg/L)增大,2个试验中污泥氨氧化速率均逐渐减小,短期试验中最大比基质利用速率由2.898 d-1变成0.694d-1;在前置反硝化系统中,平均氨氧化速率为4.091 mg/(g·h),是静态试验(1.812 mg/(g·h))的2.26倍,且氨氧化速率与苯酚质量浓度的比值为一恒定值(-0.031±0.005);在0~5 h内苯酚与氨氮同时被去除,去除率分别为24.2%和23.5%;受苯酚冲击系统硝化作用破坏后通过自身结构调整15~18 d可恢复至正常水平;较高质量浓度(60~90mg/L)的苯酚毒性抑制作用使微生物形态结构受到不可逆破坏,微生物胞外聚合物中DNA质量分数由2.53 mg/g增加至34.6 mg/g。  相似文献   

13.
采用 PHBV/PLA 和PHBV/木纤维素两种可生物降解聚合物作为反硝化碳源和生物膜载体进行序批试验和填充床连续反硝化试验。序批试验结果表明, PHBV/木纤维素固相碳源启动速度快于PHBV/PLA, 但两者24 小时脱氮效果并无明显差异; 反硝化速率分别为0.10 mg N/(L·h·g)和0.12 mg N/(L·h·g)。填充床连续反硝化试验结果表明, 两种碳源NO3 ?-N 去除负荷分别为13.95 mg/(L·h)和14.02 mg/(L·h), 去除率均高于90%, PHBV/PLA 比PHBV/木纤维素具有更好的碳源控释能力。扫描电镜结果表明, 内部结构特征的差异是共混固相碳源脱氮性能和碳源控释性能产生差异的关键因素。  相似文献   

14.
为研究污泥负荷(F/M)和碳源类型对活性污泥胞内贮存物的形成、转化及反应器脱氮、除磷性能的影响,在碳源分别为乙酸钠、葡萄糖和模拟生活污水条件下通过间歇试验研究F/M分别为0.46g/(g·d)和0.36g/(g·d)(以单位质量污泥计)时,胞内贮存物聚羟基烷酸酯(PHA)和糖原的含量变化以及反应器系统的脱氮、除磷性能。试验结果表明:不同碳源反应器中胞内贮存物含量的变化以及系统的脱氮、除磷性能存在较大差异,以乙酸钠和模拟生活污水为碳源时,活性污泥胞内最高PHA质量比分别为90.5mg/g和47.3mg/g(以单位质量挥发性污泥计),高于葡萄糖为碳源时的含量;F/M为0.46g/(g·d)时,胞内贮存物的含量高于F/M为0.36g/(g·d)时的含量,且系统的脱氮、除磷效果较好。  相似文献   

15.
研究考察了碳源种类葡萄糖、甲醇、乙酸钠、淀粉对磷酸盐生物还原系统除磷效能及磷形态转化的影响.试验结果表明,碳源种类对磷酸盐生物还原系统除磷效能有影响,以葡萄糖为碳源,系统每天外源磷的去除量42.05 mg,明显高于其他3种碳源;以葡萄糖为碳源时,系统污泥中无机磷(Inorg-P)主体成分铁铝结合态磷(NaOH-P)和可还原水溶性磷(BD-P)的转化量较高,为每克干污泥1.67 mg,后续惰性磷(NaOH85-P)转化量较高,整个磷转化过程向着磷酸盐还原茵可利用活性磷发展;以淀粉为碳源时,系统污泥中有机磷(Org-P)转化量最低为每克干污泥2.86 mg,成为整个磷转化过程的限制性步骤;以甲醇和乙酸钠为碳源时,系统污泥中NaOH85-P转化量较低,BD-P难以转化,成为整个磷转化过程的限制性步骤.  相似文献   

16.
 为探讨反硝化除磷工艺对低碳源生活污水的处理性能,在序批式移动床生物膜反应器(SBMBBR) 中,通过对反硝化除磷菌的驯化,考察厌氧过程中COD 质量浓度、pH 值对释磷以及缺氧阶段NO3--N 和NO2--N 质量浓度对反硝化吸磷性能的影响。实验结果表明:周期为8 h 的运行中,COD、氨氮、TP 的去除率分别达到95%、90%、90%以上,出水质量浓度分别为8.07、3.67、0.46 mg/L,达到城镇污水一级A 排放标准。NO3--N 作为电子受体,60 mg/L 取得最佳的缺氧吸磷效果,高于20 mg/L 的NO2--N 作为电子受体时,反硝化除磷菌活性受到抑制。研究表明,在序批式移动床生物膜反应器中,以NO3--N作为电子受体进行反硝化除磷具有很好的处理效果。  相似文献   

17.
采用农业废弃物——丝瓜络作为生物膜同步硝化反硝化(SND)系统的填料和固体碳源,研究丝瓜络固体碳源反应器的启动特性.试验研究丝瓜络的静态释碳规律;反应器启动过程中COD_(Cr)、NH_4~+-N、TN的去除效果;反应器启动成功后,利用比氧吸收速率(SOUR)、比硝化速率(SNR)及比反硝化速率(SNUR)测试生物膜性能等内容.结果表明,丝瓜络静态释碳量在41 h达到最大值,释碳过程符合二级动力学;反应器在启动的第21周期时,CODCr、NH_4~+-N、TN的去除率均在70%以上,表明该固体碳源生物膜同步硝化反硝化(SND)系统启动成功;SOUR、SNR和SNUR分别可达0.92 mg·(L·min)~(-1)、8.52 mg·(L·h)~(-1)和5.66 mg·(L·h)~(-1),说明该生物反应器可快速启动且生物膜活性高,丝瓜络适合作为固体碳源生物膜填料.  相似文献   

18.
以模拟废水为对象,在传统的流化床反应器内,将活性污泥和经驯化的反硝化污泥按适当比例混合后,用聚乙烯醇(PVA)加适当添加剂将其包埋,并对短程硝化反硝化脱氮进行了研究.结果表明,在进水NH4+-N平均为53.60mg/L,COD为281.19mg/L,HRT12h,调控温度、溶解氧、pH等,出水亚硝化率和TN去除率分别可达95%和85%以上,短程硝化反硝化脱氮较理想.当进水COD含量从150mg/L增加到750mg/L,TN去除率从73.66%提高到96.79%.适合包埋颗粒短程硝化反硝化脱氮的最佳溶解氧浓度约为4.0mg/L.当pH一直维持在8.0左右,温度从30℃降到25℃过程中,短程硝化反硝化并未遭破坏.当温度维持在25℃,pH从8.0降到7.5,连续运行约5个周期后,短程硝化反硝转变为全程的硝化反硝化.  相似文献   

19.
以缺氧/好氧生物膜系统处理碳氮质量比为3.45±0.77的生活污水,当内回流比(R)为250%~300%时,重点考察低温下好氧移动床生物膜反应器(MBBR)内的同步硝化反硝化(SND)特性。研究结果表明:系统通过延长水力停留时间(HRT)(19.2 h→30.3 h),较好地适应了季节性降温(25.2℃→14.6℃),出水COD((51.1±6.3)mg/L)和NH4+-N((2.76±2.02)mg/L)质量浓度分别达一级B和一级A标准。SND脱氮率受低温影响较小,当水温为(23.0±1.6)℃(R=250%),(19.5±0.9)℃(R=300%),(17.1±0.6)℃(R=300%)和(15.1±0.4)℃(R=300%)时,可去除进水中39.4%~47.3%的总氮TN,出水TN质量浓度分别为(18.44±2.60),(13.92±3.16),(14.93±2.19),(14.11±2.14)mg/L。同步反硝化成为发生SND的关键,平均厚度为323~1 143μm的载体生物膜可形成缺氧"微环境",并在长HRT下有效利用原水中的缓慢降解碳源,发生内源反硝化。在DO质量浓度为(3.5±0.5)mg/L,碳氮质量比为2.5~3.3时,MBBR内的生物膜可实现速率为0.353 mg/(L·h)的同步脱氮。  相似文献   

20.
短程硝化联合厌氧氨氧化处理垃圾渗滤液的启动   总被引:1,自引:0,他引:1  
针对晚期垃圾渗滤液脱氮难的问题,采用短程硝化SBR联合厌氧氨氧化SBR工艺处理晚期垃圾渗滤液.短程硝化SBR经过50 d驯化和培养,其最终出水亚硝态氮质量浓度维持在500 mg/L左右,短程硝化率稳定在98%以上.为了消除过高亚硝态氮对厌氧氨氧化菌的抑制,压氧氨氧化SBR由传统的操作模式改为反应期间连续进水间歇沉淀和出水,其水力停留时间控制在20 h.在配水驯化期,进水亚硝质量浓度由60 mg/L提升至395 mg/L,总氮容积去除速率由0.10 kg/(m3·d)提升至0.75 kg/(m3·d);驯化结束后,逐步掺入渗滤液,在实验的第156天,进水中的亚硝态氮全部由好氧SBR的出水提供.研究结果表明:渗滤液中难降解的COD未对厌氧氨氧化菌产生抑制作用,少量的反硝化作用反而提高了系统总氮的去除率,此时,系统的总氮容积去除速率为0.76 kg/(m3·d),进水COD、亚硝态氮和氨氮质量浓度分别为295,390,295 mg/L,出水CDO、亚硝态氮和氨氮质量浓度分别为246,1.3和0.6 mg/L;在不添加任何碳源的条件下,总氮去除率达90%以上.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号