首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
野生大豆种子蛋白含量差异的生理及结构基础的探讨   总被引:1,自引:0,他引:1  
利用SDS-聚丙烯酰胺凝胶电泳、电子显微镜、蛋白及酰脲含量测定等技术,对高蛋白含量(50.7% )的50359 和低蛋白含量(40.8% )的50305 两个野生大豆在种子发育过程中贮藏蛋白积累的速率、蛋白组分合成的起始时间、蛋白体发育的进程以及幼茎的酰脲含量进行了比较研究。结果表明:野生大豆50359的高蛋白含量是与其种子发育过程中较高的植株酰脲含量、较早较快的贮藏蛋白合成及积累速率,液泡中高效的蛋白贮藏方式以及蛋白体在子叶细胞中占有较大体积相联系的  相似文献   

2.
四棱豆根瘤固氮酶活力日变化呈双峰曲线,两个峰分别出现在14:30和20:00;其固氮酶活力日变化与叶片酰脲含量变化的相关系数为0.67,且与根、茎、叶的酰脲相对丰度(URA)相关系数分别为0.59,0.61,0.76。在个体发育过程中,根瘤固氮酶活力与叶片酰脲含量以及酰脲相对丰度之间呈极显著相关。贮存在30℃条件下5 h不影响植物材料的酰脲相对丰度。四棱豆叶片酰脲相对丰度可作为估价根瘤固氮酶活力的一个指标。  相似文献   

3.
酰脲(尿囊酸和尿囊素)是一种很重要的含氮化合物。它存在于许多有机体中,特别是高等植物,尤其在许多豆科植物中。最近,发现这些物质与许多豆科植物共生固氮有关,且开拓了豆科植物酰脲的研究。 酰脲广泛分布在槭树科和紫草科中。豆科植物的Vigna radiata、Vigna angularis、  相似文献   

4.
赤豆种子萌发过程中,幼苗迅速合成酰脲,在酰脲含量达到最大值前,尿囊酸含量高于尿囊素含量,子叶合成酰脲最迅速;酰脲含量达到最大值后,茎带叶的酰脲含量最高。幼苗累积酰脲在品种间相似。种子萌发过程中,幼苗尿囊素酶活力迅速呈线性增加,且与酰脲含量变化趋势一致。幼苗尿囊素酶较耐热。  相似文献   

5.
本文对从中国东北地区土壤中分离到的8株弗氏中华根瘤菌(Sinorhizobiumfredit)进行了血清学和氢代谢研究。交叉凝集试验结果表明其中存在3种血清型,而Sj5与国内外目前发现的14种S.fredii接种的大豆依赖共生固氮作用,在其株木质部汁液中,含有大量的酰脲(尿囊酸+尿囊素),它是共生固氮氮素贮存和运输的主要形式,与接种B.japonicum的值株木质部汁液中的氮运输特征基本相同。而施以无机氮源的大豆植株,其木质部汁液中酰脲含量相对较低,但却含有相对多的氮基酸[1]。  相似文献   

6.
去叶对不同生长习性大豆固氮作用的影响   总被引:2,自引:0,他引:2  
生殖生长期开始去叶后 ,(1)有限型、亚有限型和无限型 3种类型的大豆根瘤固氮酶活性都降低 ,而根瘤中酰脲含量则不同程度地增加 ;(2 )有限型大豆幼茎中酰脲含量明显增加 ,但亚有限型和无限型大豆变化不大 ;(3) 3种类型大豆幼茎中硝态氮含量增加明显  相似文献   

7.
首次报导了在白浆土和砂壤土上使用氢醌(HQ)抑制土壤脲酶活性,有效地缓解尿素分解产物及其随后的氧化产物对大豆结瘤和固氮活性的抑制效应,结果表明:1.HQ浓度在40PPM以内对大豆幼苗生长及初生结瘤表现促进作用;进一步提高HQ浓度将使大豆根系生长受阻变态而阻止结瘤。2.HQ(10—50PPM)提高了离体活性大豆根瘤类苗体悬液的耗氧量(79.4—86.1%)和琥珀酸脱氢酶活性(124.7—138.4%)。3.盆栽和田间试验证实,由于HQ缓解了尿素的分解,从而颇大减轻了尿素对大豆结瘤和固氮(乙炔还原活性)的抑制效应;通过大豆木质部中溶质氮形态(酰胺、酰脲和硝酸盐)的分析进一步证实了,大豆植株从根部向地上部运输的氮素形态同土壤氮转化强度和根瘤固氮强度(酰脲相对丰度)之间的紧密联系。4.由于麦秸还田土壤脲酶活性提高,故应提高HQ剂量;与此同时,通过麦秸的“氮因子效应”便能完全解除尿素对大豆结瘤固氮的抑制,并为大豆籽实发育提供了丰富的土壤氮源。  相似文献   

8.
酰脲代谢在许多固氮豆科植物氮素代谢中起重要作用;尿囊酸的酰胺水解酶(EC3.5.3.9)分解尿囊酸成为脲基乙醇酸和CO2、NH3,脲基乙醇酸的酰胺水解酶进一步分解脲基乙醇酸产生乙醛酸和CO2、NH3.该文首次报告测定四季豆尿囊酸降解酶(分解尿囊酸的酶)的方法,酶反应基质需要盐酸苯肼存在.在四季豆干种子、幼苗根、茎和叶,均可测出尿囊酸降解酶活力.从四季豆幼苗分离出两个尿囊酸降解酶.一个分子量大于200 kD,另一个分子量为13.5 kD;小分子量的尿囊酸降解酶(没有脲基乙醇酸酰胺水解酶或脲酶活力)用于性质研究.酶反应产物分析表明,该酶是尿囊酸的酰胺水解酶.该酶反应的最适pH为8.5.Mn2 是该酶的金属辅助因子.Km为76μmol/L,Vmax为16.7 nKat/mg(=1 002 nmol min1mg1).乙醛酸和乙醇酸抑制该酶活力.赖氨酸残基和色氨酸残基是酶活力的必需基团;巯基和酪氨酸残基不是酶活力的必需基团.  相似文献   

9.
王涛  邱秀翠  焦艳艳  刘辉  刘永杰 《昆虫学报》2012,55(11):1239-1245
双酰基肼类杀虫剂模拟天然蜕皮激素作用影响幼虫蜕皮。昆虫蜕皮激素受体的高度敏感性和专一性要求必须建立新的杀虫活性检测技术, 以适应快速准确和大批量筛选的要求。本研究采用RT-PCR技术, 获取斜纹夜蛾Spodoptera litura蜕皮激素受体(EcR)与超气门蛋白(USP)功能域目的基因, 构建EcR、 USP功能区基因原核表达载体(pEHISEGFPTEV-EcRcde和pEHISEGFPTEV-USPcde)。载体经诱导表达和蛋白纯化, 获得EcR和USP功能区纯化蛋白。在蛋白浓度l mg/mL, 3H-PonA终浓度8 nmol/L的条件下, 采用放射性配基受体结合分析测定了4种药剂(虫酰肼、 呋喃虫酰肼、 抑食肼和灭幼脲)不同浓度下的放射性比活的变化。结果显示: 随着药剂浓度的逐渐增大, 前3种药剂的放射性比活都有不同程度的降低, 其中虫酰肼的放射性比活降低程度最大, 其次是呋喃虫酰肼和抑食肼, 灭幼脲的放射性比活基本无变化。这些结果表明相同条件下虫酰肼比呋喃虫酰肼和抑食肼有更高的杀虫活力, 本研究的方法可对双酰基肼类杀虫剂或者先导化合物进行初步筛选。  相似文献   

10.
Gunnera/Nostoc固氮共生体固氮相对效率(RE)可在0.26~0.80之间变动,而不是一个常数。外加1.5%葡萄糖液可使其固氮活力提高约100%,同时也使组织的呼吸速率提高了近160%。加外源H2可使其固氮活力提高近100%,但却使组织的呼吸速率降低了近50%。正常生长条件下的组织净放H2量较低.而外源2%葡萄糖液可使组织净放H2量提高近2倍。外加5mmol/L的NH1Cl溶液可使其固氮活力下降约70%。故认为Gunnera/Nostoc共生体固氮活力受碳水化合物供应状况及比代谢两者构成的“还原力库”或“电子库”的调节,在此“还原力库”中,H2代谢起到了一个“中间调节者”的作用。  相似文献   

11.
The relationship between ureide N and N2 fixation was evaluated in greenhouse-grown soybean (Glycine max L. Merr.) and lima bean (Phaseolus lunatus L.) and in field studies with soybean. In the greenhouse, plant N accumulation from N2 fixation in soybean and lima bean correlated with ureide N. In soybean, N2 fixation, ureide N, acetylene reduction, and nodule mass were correlated when N2 fixation was inhibited by applying KNO3 solutions to the plants. The ureide-N concentrations of different plant tissues and of total plant ureide N varied according to the effectiveness of the strain of Bradyrhizobium japonicum used to inoculate plants. The ureide-N concentrations in the different plant tissues correlated with N2 fixation. Ureide N determinations in field studies with soybean correlated with N2 fixation, aboveground N accumulation, nodule weight, and acetylene reduction. N2 fixation was estimated by 15N isotope dilution with nine and ten soybean genotypes in 1979 and 1980, respectively, at the V9, R2, and R5 growth stages. In 1981, we investigated the relationship between ureide N, aboveground N accumulation, acetylene reduction, and nodule mass using four soybean genotypes harvested at the V4, V6, R2, R4, R5, and R6 growth stages. Ureide N concentrations of young stem tissues or plants or aboveground ureide N content of the four soybean genotypes varied throughout growth correlating with acetylene reduction, nodule mass, and aboveground N accumulation. The ureide-N concentrations of young stem tissues or plants or aboveground ureide-N content in three soybean genotypes varied across inoculation treatments of 14 and 13 strains of Bradyrhizobium japonicum in 1981 and 1982, respectively, and correlated with nodule mass and acetylene reduction. In the greenhouse, results correlating nodule mass with N2 fixation and ureide N across strains were variable. Acetylene reduction in soybean across host-strain combinations did not correlate with N2 fixation and ureide N. N2 fixation, ureide N, acetylene reduction, and nodule mass correlated across inoculation treatments with strains of Bradyrhizobium spp. varying in effectiveness on lima beans. Our data indicate that ureide-N determinations may be used as an additional method to acetylene reduction in studies of the physiology of N2 fixation in soybean. Ureide-N measurements also may be useful to rank strains of B. japonicum for effectiveness of N2 fixation.  相似文献   

12.
Legume–rhizobia symbiosis enables biological nitrogen fixation to improve crop production for sustainable agriculture. Small heat shock proteins (sHSPs) are involved in multiple environmental stresses and plant development processes. However, the role of sHSPs in nodule development in soybean remains largely unknown. In the present study, we identified a nodule-localized sHSP, called GmHSP17.9, in soybean, which was markedly up-regulated during nodule development. GmHSP17.9 was specifically expressed in the infected regions of the nodules. GmHSP17.9 overexpression and RNAi in transgenic composite plants and loss of function in CRISPR-Cas9 gene-editing mutant plants in soybean resulted in remarkable alterations in nodule number, nodule fresh weight, nitrogenase activity, contents of poly β-hydroxybutyrate bodies (PHBs), ureide and total nitrogen content, which caused significant changes in plant growth and seed yield. GmHSP17.9 was also found to act as a chaperone for its interacting partner, GmNOD100, a sucrose synthase in soybean nodules which was also preferentially expressed in the infected zone of nodules, similar to GmHSP17.9. Functional analysis of GmNOD100 in composite transgenic plants revealed that GmNOD100 played an essential role in soybean nodulation. The hsp17.9 lines showed markedly more reduced sucrose synthase activity, lower contents of UDP-glucose and acetyl coenzyme A (acetyl-CoA), and decreased activity of succinic dehydrogenase (SDH) in the tricarboxylic acid (TCA) cycle in nodules due to the missing interaction with GmNOD100. Our findings reveal an important role and an unprecedented molecular mechanism of sHSPs in nodule development and nitrogen fixation in soybean.  相似文献   

13.
水培大豆和田间生长的大豆,接种根瘤菌 Rhizobium B16-11C 后植株全氮含量、叶片叶绿素含量和净光合速率及种子产量都明显增加。比较 Clark 大豆的结瘤品系和不结瘤品系获类似结果。摘除根瘤后3天内叶片净光合速率无明显变化。大豆植株遮阴、去叶或切掉地上部导致根瘤活性明显下降。但去豆荚不能提高根瘤固氮的比活性。根瘤活性的日变化不能用根瘤蔗糖、淀粉含量或周围温度的变化来解释,其控制因子尚待深入研究。  相似文献   

14.
The relationship between photosynthesis of soybean and nitrogen fixation of the nodules by symbiotic Rhizobium was studied. The contents of total nitrogen and chlorophyll, the net photosynthetic rate and seed yield of soybean were much higher in either hydroponically cultivated or field-grown plants inoculated with Rhizobium B16–11C (or Clark nodulating strain) than in control without inoculation (or Clark non-nodulating strain). These results show that the symbiotic nitrogen fixation has a beneficial effect on photosynthesis. However, the effect was indirect and slow so that there was no change in the net photosynthetic rate of the soybean leaves until three clays after removing nodules from the soybean roots. On the other hand, decreasing the photosynthate supply to nodule by shade, defoliation or shoot removal of the soybean, the nodule activity declined significantly. It seems that the supply of photosynthate to root nodule is a limiting factor for symbiotic nitrogen fixation. However, the diurnal variation of the nodule activity could not be explained by change neither in the contents of sucrose and starch of the root nodules nor in the ambient temperature. The factor controlling the diurnal variation deserves further study.  相似文献   

15.
Symbiotic nitrogen fixation is sensitive to dark chilling (7 degrees C-15 degrees C)-induced inhibition in soybean (Glycine max). To characterize the mechanisms that cause the stress-induced loss of nodule function, we examined nodule structure, carbon-nitrogen interactions, and respiration in two soybean genotypes that differ in chilling sensitivity: PAN809 (PAN), which is chilling sensitive, and Highveld Top (HT), which is more chilling resistant. Nodule numbers were unaffected by dark chilling, as was the abundance of the nitrogenase and leghemoglobin proteins. However, dark chilling decreased nodule respiration rates, nitrogenase activities, and NifH and NifK mRNAs and increased nodule starch, sucrose, and glucose in both genotypes. Ureide and fructose contents decreased only in PAN nodules. While the chilling-induced decreases in nodule respiration persisted in PAN even after return to optimal temperatures, respiration started to recover in HT by the end of the chilling period. The area of the intercellular spaces in the nodule cortex and infected zone was greatly decreased in HT after three nights of chilling, an acclimatory response that was absent from PAN. These data show that HT nodules are able to regulate both respiration and the area of the intercellular spaces during chilling and in this way control the oxygen diffusion barrier, which is a key component of the nodule stress response. We conclude that chilling-induced loss of symbiotic nitrogen fixation in PAN is caused by the inhibition of respiration coupled to the failure to regulate the oxygen diffusion barrier effectively. The resultant limitations on nitrogen availability contribute to the greater chilling-induced inhibition of photosynthesis in PAN than in HT.  相似文献   

16.
BACKGROUND AND AIMS: Legume nitrogen is derived from two different sources, symbiotically fixed atmospheric N(2) and soil N. The effect of genetic variability of root and nodule establishment on N acquisition and seed protein yield was investigated under field conditions in pea (Pisum sativum). In addition, these parameters were related to the variability in preference for rhizobial genotypes. METHODS: Five different spring pea lines (two hypernodulating mutants and three cultivars), previously identified in artificial conditions as contrasted for both root and nodule development, were characterized under field conditions. Root and nodule establishment was examined from the four-leaf stage up to the beginning of seed filling and was related to the patterns of shoot dry matter and nitrogen accumulation. The genetic structure of rhizobial populations associated with the pea lines was obtained by analysis of nodule samples. The fraction of nitrogen derived from symbiotic fixation was estimated at the beginning of seed filling and at physiological maturity, when seed protein content and yield were determined. KEY RESULTS: The hypernodulating mutants established nodules earlier and maintained them longer than was the case for the three cultivars, whereas their root development and nitrogen accumulation were lower. The seed protein yield was higher in 'Athos' and 'Austin', the two cultivars with increased root development, consistent with their higher N absorption during seed filling. CONCLUSION: The hypernodulating mutants did not accumulate more nitrogen, probably due to the C cost for nodulation being higher than for root development. Enhancing exogenous nitrogen supply at the end of the growth cycle, by increasing the potential for root N uptake from soil, seems a good option for improving pea seed filling.  相似文献   

17.
Two cultivars of French bean (Phaseolus vulgaris L.) viz. contender and arka komal were planted in polythene bags containing sand and grown under glasshouse conditions. The nodulation status, shoot/root biomass, activities of several nodule enzymes, total soluble protein and leghaemoglobin contents were monitored over the entire growth period. Allantoinase activity in leaves was measured to monitor the ureide degrading capacity. Significant genotype difference was observed in both the cultivars. All the parameters showed a decline after flowering except uricase, which declined before flowering. Malate dehydrogenase and isocitrate dehydrogenase showed a constant decline throughout the growth period. Degree of decline varied with the genotype for all the parameters. Leghaemoglobin content, PEP carboxylase activity and ureide degrading capacity of leaves did not show an appreciable decline in contender and were significantly higher than in arka komal. These factors can be used to increase nitrogen fixation in French bean.  相似文献   

18.
Legumes can access atmospheric nitrogen through a symbiotic relationship with nitrogen‐fixing bacteroids that reside in root nodules. In soybean, the products of fixation are the ureides allantoin and allantoic acid, which are also the dominant long‐distance transport forms of nitrogen from nodules to the shoot. Movement of nitrogen assimilates out of the nodules occurs via the nodule vasculature; however, the molecular mechanisms for ureide export and the importance of nitrogen transport processes for nodule physiology have not been resolved. Here, we demonstrate the function of two soybean proteins – GmUPS1‐1 (XP_003516366) and GmUPS1‐2 (XP_003518768) – in allantoin and allantoic acid transport out of the nodule. Localization studies revealed the presence of both transporters in the plasma membrane, and expression in nodule cortex cells and vascular endodermis. Functional analysis in soybean showed that repression of GmUPS1‐1 and GmUPS1‐2 in nodules leads to an accumulation of ureides and decreased nitrogen partitioning to roots and shoot. It was further demonstrated that nodule development, nitrogen fixation and nodule metabolism were negatively affected in RNAi UPS1 plants. Together, we conclude that export of ureides from nodules is mediated by UPS1 proteins, and that activity of the transporters is not only essential for shoot nitrogen supply but also for nodule development and function.  相似文献   

19.
Ureide concentration in the cortical apoplast of soybean (Glycinemax(L.) Merr.) nodules increases rapidly in response to noduleexcision. The objective here was to determine if changes inapoplastic ureide may be related to the control of resistanceto gas diffusion which is thought to be localized in the nodulecortex. Following decapitation of shoots, nitrogenase activity(acetylene reduction) and ureide concentration in total noduleextracts declined over a period of several hours. Apoplasticureide concentration relative to total nodule ureide was elevatedunder these conditions, but the treatment effect was small comparedto non-decapitated controls. Decapitation also caused a significantdecline in the concentrations of sucrose, glucose, and D-pinitolin nodules. However, the decline in carbohydrates was similarin the nodule cortex and the nodule as a whole, suggesting thatthe carbohydrate changes are not related to a cortex-localizedmechanism. Non-invasive treatments involving increases or decreasesin oxygen concentration supplied to nodulated roots caused rapiddecreases in respiration of nodulated roots and in ureide concentrationin total nodule extracts, but did not cause major changes inapoplastic ureide concentrations. The combined results indicatethat apoplastic ureide is probably not involved in the regulationof resistance to gas diffusion. The rapid decline in noduleureide concentrations in response to changing oxygen supplydocuments the sensitivity of ureide synthesis and/or transportto alterations in nodule respiration and/or nitrogenase activity Key words: Glycine max, Pisum sativum, ureide, carbohydrates  相似文献   

20.
The growth stage of a soybean [Glycine max (L.) Merrill] plant may influence its physiological response to dark chilling. Opposed to vegetative development, the intense nutrient and energy requirements of the developing seeds during pod filling could cause additional chilling damage and decreased recovery capacity. Previously, we investigated dark chilling tolerance during vegetative development in two soybean genotypes, 'Maple Arrow' and 'Fiskeby V' and consistently found that photosynthesis and symbiotic nitrogen fixation (SNF) was less affected by dark chilling in 'Maple Arrow'. In this study we describe the dark chilling response of the same genotypes during pod filling. Our aim was to establish whether the potential selection criteria for dark chilling tolerance, identified during vegetative development, was equally sensitive during pod filling. The results indicate that photosynthesis is less affected by dark chilling in 'Maple Arrow' than in 'Fiskeby V', not only during vegetative development, but also during the critical reproductive stage of pod filling. 'Fiskeby V' also lacks the ability to restore normal photosynthetic capacity during an extended recovery treatment. The decrease of nodule ureide content indicates that SNF was inhibited to a similar extent in both genotypes. Nodule ureide content was reduced more than stem ureide content, suggesting that the former is a more sensitive indicator of chilling stress effects on SNF. The results indicate that certain photosynthetic and fluorescence parameters are sensitive indicators of dark chilling tolerance throughout plant development and should prove valuable in future breeding programmes aimed at increasing the chilling tolerance of soybean.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号