首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
In this paper the impact of Doppler weather radar (DWR) reflectivity and radial velocity observations for the short range forecasting of a tropical storm and associated rainfall event have been examined. Doppler radar observations of a tropical storm case that occurred during 29–30 October 2006 from SHARDWR (13.6° N, 80.2° E) are assimilated in the WRF 3DVAR system. The observation operator for radar reflectivity and radial velocity is included within latest version of WRF 3DVAR system. Keeping all model physics the same, three experiments were conducted at a horizontal resolution of 30?km. In the control experiment (CTRL), NCEP Final Analysis (FNL) interpolated to the model grid was used as the initial condition for 48-h free forecast. In the second experiment (NODWR), 6-h assimilation cycles have been carried out using all conventional (radiosonde and surface data) and non-conventional (satellite) observations from the Global Telecommunication System (GTS). The third experiment (DWR) is the same as the second, except Doppler radar radial velocity and reflectivity observations are also used in the assimilation cycle. Continuous 6-h assimilation cycle employed in the WRF-3DVAR system shows positive impact on the rainfall forecast. Assimilation of DWR data creates several small scale features near the storm centre. Additional sensitivity experiments were conducted to study the individual impact of reflectivity and radial velocity in the assimilation cycle. Radar data assimilation with reflectivity alone produced large analysis response on both thermodynamical and dynamical fields. However, radial velocity assimilation impacted only on dynamical fields. Analysis increments with radar reflectivity and radial velocity produce adjustments in both dynamical and thermodynamical fields. Verification of QPF skill shows that radar data assimilation has a considerable impact on the short range precipitation forecast. Improvement of the QPF skill with radar data assimilation is more clearly seen in the heavy rainfall (for thresholds >7?mm) event than light rainfall (for thresholds of 1 and 3?mm). The spatial pattern of rainfall is well simulated by the DWR experiment and is comparable to TRMM observations.  相似文献   

2.
Pre-monsoon rainfall around Kolkata (northeastern part of India) is mostly of convective origin as 80% of the seasonal rainfall is produced by Mesoscale Convective Systems (MCS). Accurate prediction of the intensity and structure of these convective cloud clusters becomes challenging, mostly because the convective clouds within these clusters are short lived and the inaccuracy in the models initial state to represent the mesoscale details of the true atmospheric state. Besides the role in observing the internal structure of the precipitating systems, Doppler Weather Radar (DWR) provides an important data source for mesoscale and microscale weather analysis and forecasting. An attempt has been made to initialize the storm-scale numerical model using retrieved wind fields from single Doppler radar. In the present study, Doppler wind velocities from the Kolkata Doppler weather radar are assimilated into a mesoscale model, MM5 model using the three-dimensional variational data assimilation (3DVAR) system for the prediction of intense convective events that occurred during 0600 UTC on 5 May and 0000 UTC on 7 May, 2005. In order to evaluate the impact of the DWR wind data in simulating these severe storms, three experiments were carried out. The results show that assimilation of Doppler radar wind data has a positive impact on the prediction of intensity, organization and propagation of rain bands associated with these mesoscale convective systems. The assimilation system has to be modified further to incorporate the radar reflectivity data so that simulation of the microphysical and thermodynamic structure of these convective storms can be improved.  相似文献   

3.
An attempt is made to evaluate the impact of Doppler Weather Radar (DWR) radial velocity and reflectivity in Weather Research and Forecasting (WRF)-3D variational data assimilation (3DVAR) system for prediction of Bay of Bengal (BoB) monsoon depressions (MDs). Few numerical experiments are carried out to examine the individual impact of the DWR radial velocity and the reflectivity as well as collectively along with Global Telecommunication System (GTS) observations over the Indian monsoon region. The averaged 12 and 24 h forecast errors for wind, temperature and moisture at different pressure levels are analyzed. This evidently explains that the assimilation of radial velocity and reflectivity collectively enhanced the performance of the WRF-3DVAR system over the Indian region. After identifying the optimal combination of DWR data, this study has also investigated the impact of assimilation of Indian DWR radial velocity and reflectivity data on simulation of the four different summer MDs that occurred over BoB. For this study, three numerical experiments (control no assimilation, with GTS and GTS along with DWR) are carried out to evaluate the impact of DWR data on simulation of MDs. The results of the study indicate that the assimilation of DWR data has a positive impact on the prediction of the location, propagation and development of rain bands associated with the MDs. The simulated meteorological parameters and tracks of the MDs are reasonably improved after assimilation of DWR observations as compared to the other experiments. The root mean square errors (RMSE) of wind fields at different pressure levels, equitable skill score and frequency bias are significantly improved in the assimilation experiments mainly in DWR assimilation experiment for all MD cases. The mean Vector Displacement Errors (VDEs) are significantly decreased due to the assimilation of DWR observations as compared to the CNTL and 3DV_GTS experiments. The study clearly suggests that the performance of the model simulation for the intense convective system which influences the large scale monsoonal flow is significantly improved after assimilation of the Indian DWR data from even one coastal locale within the MDs track.  相似文献   

4.
In this work, the impact of assimilation of conventional and satellite remote sensing observations (Oceansat-2 winds, MODIS temperature/humidity profiles) is studied on the simulation of two tropical cyclones in the Bay of Bengal region of the Indian Ocean using a three-dimensional variational data assimilation (3DVAR) technique. The Weather Research and Forecasting (WRF)-Advanced Research WRF (ARW) mesoscale model is used to simulate the severe cyclone JAL: 5–8 November 2010 and the very severe cyclone THANE: 27–30 December 2011 with a double nested domain configuration and with a horizontal resolution of 27 × 9 km. Five numerical experiments are conducted for each cyclone. In the control run (CTL) the National Centers for Environmental Prediction global forecast system analysis and forecasts available at 50 km resolution were used for the initial and boundary conditions. In the second (VARAWS), third (VARSCAT), fourth (VARMODIS) and fifth (VARALL) experiments, the conventional surface observations, Oceansat-2 ocean surface wind vectors, temperature and humidity profiles of MODIS, and all observations were respectively used for assimilation. Results indicate meager impact with surface observations, and relatively higher impact with scatterometer wind data in the case of the JAL cyclone, and with MODIS temperature and humidity profiles in the case of THANE for the simulation of intensity and track parameters. These relative impacts are related to the area coverage of scatterometer winds and MODIS profiles in the respective storms, and are confirmed by the overall better results obtained with assimilation of all observations in both the cases. The improvements in track prediction are mainly contributed by the assimilation of scatterometer wind vector data, which reduced errors in the initial position and size of the cyclone vortices. The errors are reduced by 25, 21, 38 % in vector track position, and by 57, 36, 39 % in intensity, at 24, 48, 72 h predictions, respectively, for the two cases using assimilation of all observations. Simulated rainfall estimates indicate that while the assimilation of scatterometer wind data improves the location of the rainfall, the assimilation of MODIS profiles produces a realistic pattern and amount of rainfall, close to the observational estimates.  相似文献   

5.
The traditional method of Synthetic Aperture Radar(SAR)wind field retrieval is based on an empirical relation between the near surface winds and the normalized radar backscatter cross section to estimate wind speeds,where this relation is called the geophysical model function(GMF).However,the accuracy rapidly decreases due to the impact of rainfall on the measurement of SAR and the saturation of backscattered intensity under the condition of tropical cyclone.Because of no available instrument synchronously monitoring rain rate on the satellite platform of SAR,we have to derive the precipitation of the SAR observation time from non-simultaneous passive microwave observations of rain in combination with geostationary IR images,and then use the model of rain correction to remove the impact of rain on SAR wind field measurements.For the saturation of radar backscatter cross section in high wind speed conditions,we develop an approach to estimate tropical cyclone parameters and wind fields based on the improved Holland model and the SAR image features of tropical cyclone.To retrieve the low-to-moderate wind speed,the wind direction of tropical cyclone is estimated from the SAR image using wavelet analysis.And then the maximum wind speed and the central pressure of tropical cyclone are calculated by a least square minimization of the difference between the improved Holland model and the low-to-moderate wind speed retrieved from SAR.In addition,wind fields are estimated from the improved Holland model using the above-mentioned parameters of tropical cyclone as input.To evaluate the accuracy of our approach,the SAR images of typhoon Aere,typhoon Khanun,and hurricane Ophelia are used to estimate tropical cyclone parameters and wind fields,which are compared with the best track data and reanalyzed wind fields of the Joint Typhoon Warning Center(JTWC)and the Hurricane Research Division(HRD).The results indicate that the tropical cyclone center,maximum wind speed,and central pressure are generally consistent with the best track data,and wind fields agree well with reanalyzed data from HRD.  相似文献   

6.
The radar reflectivity (Z)–rain intensity (R) relationship fluctuates in both temporal and spatial scales. The dynamic factor analysis (DFA) and min/max autocorrelation factor analysis (MAFA) was specifically designed for considering various space–time integrations of gauge rainfall and radar reflectivity. We detect representative radar reflectivity observed around rainfall stations that were most responsible for rainfall intensity and identify the crucial patterns of the radar reflectivity in the Kaoping River watershed during Typhoon Morakot. Result shows that the MAFA and DFA can reduce the uncertainty of the dynamic Z‐R relationship effectively. The MAFA separates an entire area into two subareas (southern and northern areas) according to the relationships between the radar reflectivity and min/max autocorrelation factor (MAF) axes. For both areas, the different extents of temporal rainfall correlated with the radar reflectivity were determined using DFA. Especially in the northern area, the radar reflectivity was significantly related to the rainfall intensity for most stations without mountain blockage. Mountain blockages associated with the presence of terrain and wind direction were inferred the major factors that affected the relationship between radar reflectivity and rainfall intensity in the mountainous watershed. Further study can consider the terrain effect and meteorological information, such as wind speed and direction in the DFA model, with the dominant radar reflectivity to estimate the temporal rainfall patterns. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
This study explores for the first time the impact of assimilating radial velocity (Vr) observations from a single or multiple Taiwan’s coastal radars on tropical cyclone (TC) forecasting after landfall in the Chinese mainland by using a Weather Research and Forecasting model (WRF)-based ensemble Kalman filter (EnKF) data assimilation system. Typhoon Morakot (2009), which caused widespread damage in the southeastern coastal regions of the mainland after devastating Taiwan, was chosen as a case study. The results showed that assimilating Taiwan’s radar Vr data improved environmental field and steering flow and produced a more realistic TC position and structure in the final EnKF cycling analysis. Thus, the subsequent TC track and rainfall forecasts in southeastern China were improved. In addition, better observations of the TC inner core by Taiwan’s radar was a primary factor in improving TC rainfall forecast in the Chinese mainland.  相似文献   

8.
The Proper Orthogonal Decomposition(POD)-based ensemble four-dimensional variational(4DVar) assimilation method(POD4DEnVar) was proposed to combine the strengths of EnKF(i.e.,the ensemble Kalman filter) and 4DVar assimilation methods.Recently,a POD4DEnVar-based radar data assimilation scheme(PRAS) was built and its effectiveness was demonstrated.POD4 DEnVar is based on the assumption of a linear relationship between the model perturbations(MPs)and the observation perturbations(OPs);however,this assumption is likely to be destroyed by the highly non-linear forecast model or observation operator.To address this issue,using the Gauss-Newton iterative method,the nonlinear least squares enhanced POD4 DEnVar algorithm(referred to as NLS-4DVar) was proposed.Naturally,the PRAS was upgraded to form the NLS-4DVar-based radar data assimilation scheme(NRAS).To evaluate the performance of NRAS against PRAS,observing system simulation experiments(OSSEs) were conducted to assimilate reflectivity and radial velocity individually,with one,two,and three iterations.The results demonstrated that the NRAS outperformed PRAS in improving the initial condition and the forecasting of model variables and rainfall.The NRAS,with a smaller number of iterations,can yield a convergent result.In contrast to the situation when assimilating radial velocity,the advantages of NRAS over PRAS were more obvious when assimilating reflectivity.  相似文献   

9.
Assimilation experiments are performed with the Weather Research and Forecasting (WRF) models’ three-dimensional variational data assimilation (3D-Var) scheme to evaluate the impact of directly assimilating the Advanced Television and Infrared Observation Satellite Operational Vertical Sounder (ATOVS) radiance, including AMSU-A, AMSU-B and HIRS, on the analysis and forecasts of a mesoscale model over the Indian region. The present study is, to our knowledge, the first where the impact of ATOVS radiance has been evaluated on the analysis and forecasts of a mesoscale model over the Indian region. The control (without ATOVS radiance) as well as experimental (which assimilated ATOVS radiance) run were made for 48 h starting at 0000 UTC during the entire July 2008. The impacts of assimilating the radiances from different instruments (e.g., AMSU-A, AMSU-B and HIRS) were measured in comparison to the control run. The assimilation experiments for July 2008 (30 cases) demonstrated a positive impact of the assimilated ATOVS radiance on both the analysis state as well as subsequent short-range forecasts. Relative to the control run, the moisture analysis was improved with the assimilation of AMSU-B and HIRS radiance, while AMSU-A was mainly responsible for improved temperature analysis. The comparison of the model-predicted temperature, moisture and wind with NCEP analysis indicated that a positive forecast impact is achieved from each of the three instruments. HIRS and AMSU-A radiance yielded only a slight positive forecast impact, while AMSU-B radiance had the largest positive forecast impact for moisture, temperature and wind. The comparison of model-predicted rainfall with observed rainfall indicates that ATOVS radiance, particularly AMSU-B and HIRS, impacted the rainfall positively. This study clearly shows that the improved analysis of mid-tropospheric moisture, due to the assimilation of AMSU-B radiances, is a key factor to improve the short-term forecast skill of a mesoscale model.  相似文献   

10.
Jia Liu  Michaela Bray  Dawei Han 《水文研究》2013,27(25):3627-3640
The mesoscale Numerical Weather Prediction (NWP) model is gaining popularity among the hydrometeorological community in providing high‐resolution rainfall forecasts at the catchment scale. Although the performance of the model has been verified in capturing the physical processes of severe storm events, the modelling accuracy is negatively affected by significant errors in the initial conditions used to drive the model. Several meteorological investigations have shown that the assimilation of real‐time observations, especially the radar data can help improve the accuracy of the rainfall predictions given by mesoscale NWP models. The aim of this study is to investigate the effect of data assimilation for hydrological applications at the catchment scale. Radar reflectivity together with surface and upper‐air meteorological observations is assimilated into the Weather Research and Forecasting (WRF) model using the three‐dimensional variational data‐assimilation technique. Improvement of the rainfall accumulation and its temporal variation after data assimilation is examined for four storm events in the Brue catchment (135.2 km2) located in southwest England. The storm events are selected with different rainfall distributions in space and time. It is found that the rainfall improvement is most obvious for the events with one‐dimensional evenness in either space or time. The effect of data assimilation is even more significant in the innermost domain which has the finest spatial resolution. However, for the events with two‐dimensional unevenness of rainfall, i.e. the rainfall is concentrated in a small area and in a short time period, the effect of data assimilation is not ideal. WRF fails in capturing the whole process of the highly convective storm with densely concentrated rainfall in a small area and a short time period. A shortened assimilation time interval together with more efficient utilisation of the weather radar data might help improve the effectiveness of data assimilation in such cases. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
This work introduces a new variational Bayes data assimilation method for the stochastic estimation of precipitation dynamics using radar observations for short term probabilistic forecasting (nowcasting). A previously developed spatial rainfall model based on the decomposition of the observed precipitation field using a basis function expansion captures the precipitation intensity from radar images as a set of ‘rain cells’. The prior distributions for the basis function parameters are carefully chosen to have a conjugate structure for the precipitation field model to allow a novel variational Bayes method to be applied to estimate the posterior distributions in closed form, based on solving an optimisation problem, in a spirit similar to 3D VAR analysis, but seeking approximations to the posterior distribution rather than simply the most probable state. A hierarchical Kalman filter is used to estimate the advection field based on the assimilated precipitation fields at two times. The model is applied to tracking precipitation dynamics in a realistic setting, using UK Met Office radar data from both a summer convective event and a winter frontal event. The performance of the model is assessed both traditionally and using probabilistic measures of fit based on ROC curves. The model is shown to provide very good assimilation characteristics, and promising forecast skill. Improvements to the forecasting scheme are discussed.  相似文献   

12.
In this study, the Weather Research and Forecasting (WRF-2.0.3.1) model with three-dimensional variational data assimilation (3DVAR) was utilized to study a heavy rainfall event along the west coast of India with and without the assimilation of GPS occultation refractivity soundings in the monsoon period of 2002. The WRF model is a next-generation mesoscale numerical weather prediction system designed to serve both operational forecasting and atmospheric research communities. The Global Positioning System (GPS) radio occultation (RO) refractivity data, processed by UCAR, were obtained from the CHAMP and SAC-C missions. This study investigates the impact of thirteen GPS occultation refractivity soundings only, as assimilated into the WRF model with 3DVAR, on the rainfall prediction over the western coastal mountain of India. The model simulation, with the finest resolution of 10 km, was in good agreement with rainfall observations, up to 72-h forecast. There are some subtle but important differences in predicted rainfalls between the control run CN (without the assimilation of refractivity soundings) and G13 (with the assimilation of thirteen GPS RO soundings). In general, the assimilation run G13 gives a better prediction in terms of both rainfall locations and amounts at later times. The moisture increments were analyzed at the initial and forecast times to assess the impact of GPS RO data assimilation. The results indicate that remote soundings in the forcing region could have significant impacts on distant downstream regions. It is anticipated, based on this study, that considerably occultation soundings available from the six-satellite constellation of FORMOSAT-3/COSMIC would have even more significant impacts on weather prediction in this region.  相似文献   

13.
Abstract

Abstract After the destructive flood in 1998, the Chinese government planned to build national weather radar networks and to use radar data for real-time flood forecasting. Hence, coupling of weather radar rainfall data and a hydrological (Xinanjiang) model became an important issue. The present study reports on experience in such coupling at the Shiguanhe watershed. After having corrected the radar reflectivity and the attenuation data, the weather radar rainfall was estimated and then corrected in real time using a Kalman filter. In general, the precipitation estimated from weather radar is reasonably accurate in most of the catchment investigated, after corrections as above. Compared to the results simulated by raingauge data, the simulations based on the weather radar data are of similar accuracy. Present research results show that rainfall estimated from the weather radar, the radar data correction method, the method of coupling, and the Xinanjiang model lend themselves well to application in operational real-time flood forecasting.  相似文献   

14.
An effective bias correction procedure using gauge measurement is a significant step for radar data processing to reduce the systematic error in hydrological applications. In these bias correction methods, the spatial matching of precipitation patterns between radar and gauge networks is an important premise. However, the wind-drift effect on radar measurement induces an inconsistent spatial relationship between radar and gauge measurements as the raindrops observed by radar do not fall vertically to the ground. Consequently, a rain gauge does not correspond to the radar pixel based on the projected location of the radar beam. In this study, we introduce an adjustment method to incorporate the wind-drift effect into a bias correlation scheme. We first simulate the trajectory of raindrops in the air using downscaled three-dimensional wind data from the weather research and forecasting model (WRF) and calculate the final location of raindrops on the ground. The displacement of rainfall is then estimated and a radar–gauge spatial relationship is reconstructed. Based on this, the local real-time biases of the bin-average radar data were estimated for 12 selected events. Then, the reference mean local gauge rainfall, mean local bias, and adjusted radar rainfall calculated with and without consideration of the wind-drift effect are compared for different events and locations. There are considerable differences for three estimators, indicating that wind drift has a considerable impact on the real-time radar bias correction. Based on these facts, we suggest bias correction schemes based on the spatial correlation between radar and gauge measurements should consider the adjustment of the wind-drift effect and the proposed adjustment method is a promising solution to achieve this.  相似文献   

15.
Surface winds are crucial for accurately modeling the surface circulation in the coastal ocean. In the present work, high-frequency radar surface currents are assimilated using an ensemble scheme which aims to obtain improved surface winds taking into account European Centre for Medium-Range Weather Forecasts winds as a first guess and surface current measurements. The objective of this study is to show that wind forcing can be improved using an approach similar to parameter estimation in ensemble data assimilation. Like variational assimilation schemes, the method provides an improved wind field based on surface current measurements. However, the technique does not require an adjoint, and it is thus easier to implement. In addition, it does not rely on a linearization of the model dynamics. The method is validated directly by comparing the analyzed wind speed to independent in situ measurements and indirectly by assessing the impact of the corrected winds on model sea surface temperature (SST) relative to satellite SST.  相似文献   

16.
Due to the high cost of ocean observation system, the scientific design of observation network becomes much important. The current network of the high frequency radar system in the Gulf of Thailand has been studied using a three-dimensional coastal ocean model. At first, the observations from current radars have been assimilated into this coastal model and the forecast results have improved due to the data assimilation. But the results also show that further optimization of the observing network is necessary. And then, a series of experiments were carried out to assess the performance of the existing high frequency ground wave radar surface current observation system. The simulated surface current data in three regions were assimilated sequentially using an efficient ensemble Kalman filter data assimilation scheme. The experimental results showed that the coastal surface current observation system plays a positive role in improving the numerical simulation of the currents. Compared with the control experiment without assimilation, the simulation precision of surface and subsurface current had been improved after assimilated the surface currents observed at current networks. However, the improvement for three observing regions was quite different and current observing network in the Gulf of Thailand is not effective and a further optimization is required. Based on these evaluations, a manual scheme has been designed by discarding the redundant and inefficient locations and adding new stations where the performance after data assimilation is still low. For comparison, an objective scheme based on the idea of data assimilation has been obtained. Results show that all the two schemes of observing network perform better than the original network and optimal scheme-based data assimilation is much superior to the manual scheme that based on the evaluation of original observing network in the Gulf of Thailand. The distributions of the optimal network of radars could be a useful guidance for future design of observing system in this region.  相似文献   

17.
The Regional Integrated Multi-Hazard Early Warning System (RIMES), an international, intergovernmental organization based in Thailand is engaged in disaster risk reduction over the Asia–Pacific region through early warning information. In this paper, RIMES’ customized Weather Research Forecast (WRF) model has been used to evaluate the simulations of cyclone Nargis which hit Myanmar on 2 May 2008, the most deadly severe weather event in the history of Myanmar. The model covers a domain of 35oE to 145oE in the east—west direction and 12oS to 40oN in the north—south direction in order to cover Asia and east Africa with a resolution of 9?km in the horizontal and 28 vertical levels. The initial and boundary conditions for the simulations were provided by the National Center for Environmental Prediction-Global Forecast System (NCEP-GFS) available at 1o lon/lat resolution. An attempt is being made to critically evaluate the simulation of cyclone Nargis by seven set of simulations in terms of track, intensity and landfall time of the cyclone. The seven sets of model simulations were initialized every 12?h starting from 0000 UTC 28 April to 01 May 2008. Tropical Rainfall Measurement Mission (TRMM) precipitation (mm) is used to evaluate the performance of the simulations of heavy rainfall associated with the tropical cyclone. The track and intensity of the simulated cyclone are compared by making use of Joint Typhoon Warning Center (JTWC) data sets. The results indicate that the landfall time, the distribution and intensity of the rainfall, pressure and wind field are well simulated as compared with the JTWC estimates. The average landfall track error for all seven simulations was 64?km with an average time error of about 5?h. The average intensity error of central pressure in all the simulations were found out to be approximately 6?hPa more than the JTWC estimates and in the case of wind, the simulations under predicted it by an average of 12?m?s?1.  相似文献   

18.
The characteristics and dynamics associated with the distribution, intensity, and triggering factors of local severe precipitation in Zhejiang Province induced by Super Typhoon Soudelor (2015) were investigated using mesoscale surface observations, radar reflectivity, satellite nephograms, and the final (FNL) analyses of the Global Forecasting System (GFS) of the National Center for Environmental Prediction (NCEP). The rainfall processes during Soudelor’s landfall and translation over East China could be separated into four stages based on rainfall characteristics such as distribution, intensity, and corresponding dynamics. The relatively less precipitation in the first stage resulted from interaction between the easterly wind to the north flank of this tropical cyclone (TC) and the coastal topography along the southeast of Zhejiang Province, China. With landfall of the TC in East China during the second stage, precipitation maxima occurred because of interaction between the TC’s principal rainbands and the local topography from northeastern Fujian Province to southwestern Zhejiang Province. The distribution of precipitation presented significant asymmetric features in the third stage with maximal rainfall bands in the northeast quadrant of the TC when Soudelor’s track turned from westward to northward as the TC decayed rapidly. Finally, during the northward to northeastward translation of the TC in the fourth stage, the interaction between a mid-latitude weather system and the northern part of the TC resulted in transfer of the maximum rainfall from the north of Zhejiang Province to the north of Jiangsu Province, which represented the end of rainfall in Zhejiang Province. Further quantitative calculations of the rainfall rate induced by the interaction between local topography and TC circulation (defined as “orographic effects”) in the context of a one-dimensional simplified model showed that orographic effects were the primary factor determining the intensity of precipitation in this case, and accounted for over 50% of the total precipitation. The asymmetric distribution of the TC’s rainbands was closely related to the asymmetric distribution of moisture resulted from changes of the TC’s structure, and led to asymmetric distribution of local intense precipitation induced by Soudelor. Based on analysis of this TC, it could be concluded that local severe rainfall in the coastal regions of East China is closely related to changes of TC structure and intensity, as well as the outer rainbands. In addition, precipitation intensity and duration will increase correspondingly because of the complex interactions between the TC and local topography, and the particular TC track along large-scale steering flow. The results of this study may be useful for the understanding, prediction, and warning of disasters induced by local extreme rainfall caused by TCs, especially for facilitating forecasting and warning of flooding and mudslides associated with torrential rain caused by interactions between landfalling TCs and coastal topography.  相似文献   

19.
The overall objective of this study is to improve the forecasting accuracy of the precipitation in the Singapore region by means of both rainfall forecasting and nowcasting. Numerical Weather Predication (NWP) and radar‐based rainfall nowcasting are two important sources for quantitative precipitation forecast. In this paper, an attempt to combine rainfall prediction from a high‐resolution mesoscale weather model and a radar‐based rainfall model was performed. Two rainfall forecasting methods were selected and examined: (i) the weather research and forecasting model (WRF); and (ii) a translation model (TM). The WRF model, at a high spatial resolution, was run over the domain of interest using the Global Forecast System data as initializing fields. Some heavy rainfall events were selected from data record and used to test the forecast capability of WRF and TM. Results obtained from TM and WRF were then combined together to form an ensemble rainfall forecasting model, by assigning weights of 0.7 and 0.3 weights to TM and WRF, respectively. This paper presented results from WRF and TM, and the resulting ensemble rainfall forecasting; comparisons with station data were conducted as well. It was shown that results from WRF are very useful as advisory of anticipated heavy rainfall events, whereas those from TM, which used information of rain cells already appearing on the radar screen, were more accurate for rainfall nowcasting as expected. The ensemble rainfall forecasting compares reasonably well with the station observation data. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
Radar‐based estimates of rainfall are affected by many sources of uncertainties, which would propagate through the hydrological model when radar rainfall estimates are used as input or initial conditions. An elegant solution to quantify these uncertainties is to model the empirical relationship between radar measurements and rain gauge observations (as the ‘ground reference’). However, most current studies only use a fixed and uniform model to represent the uncertainty of radar rainfall, without consideration of its variation under different synoptic regimes. Wind is such a typical weather factor, as it not only induces error in rain gauge measurements but also causes the raindrops observed by weather radar to drift when they reach the ground. For this reason, as a first attempt, this study introduces the wind field into the uncertainty model and designs the radar rainfall uncertainty model under different wind conditions. We separate the original dataset into three subsamples according to wind speed, which are named as WDI (0–2 m/s), WDII (2–4 m/s) and WDIII (>4 m/s). The multivariate distributed ensemble generator is introduced and established for each subsample. Thirty typical events (10 at each wind range) are selected to explore the behaviours of uncertainty under different wind ranges. In each time step, 500 ensemble members are generated, and the values of 5th to 95th percentile values are used to produce the uncertainty bands. Two basic features of uncertainty bands, namely dispersion and ensemble bias, increase significantly with the growth of wind speed, demonstrating that wind speed plays a considerable role in influencing the behaviour of the uncertainty band. On the basis of these pieces of evidence, we conclude that the radar rainfall uncertainty model established under different wind conditions should be more realistic in representing the radar rainfall uncertainty. This study is only a start in incorporating synoptic regimes into rainfall uncertainty analysis, and a great deal of more effort is still needed to build a realistic and comprehensive uncertainty model for radar rainfall data. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号