共查询到20条相似文献,搜索用时 78 毫秒
1.
李金霞 《南京邮电大学学报(自然科学版)》2009,9(19)
利用改进的自适应粒子群优化算法(APSO)较强全局寻优、快速收敛的特点和模糊C-均值算法(FCM)对初始值敏感、容易陷入局部最优的缺点,提出一种基于自适应粒子群优化算法的模糊聚类算法(APFM)。新算法有效的克服了FCM算法的缺点,同时增强了APSO算法全局搜索和跳出局部最优的能力。实验表明:新算法与单一的FCM和APSO算法相比聚类更准确,效率更高。 相似文献
2.
该文将量子人工蜂群(Quantum artificial bee colony, QABC)算法用于K均值(K-means)聚类的类别中心点选择,优化K均值聚类算法,可有效解决因随机设置K均值中心点而导致聚类准确度不高的问题。该文设置K均值聚类类别数,并随机设置若干类别中心,采用人工蜂群(Artificial bee colony, ABC)算法优化类别中心点,根据待聚类样本点构建蜜蜂种群,并对蜂群个体位置采用量子比特表示。以样本点和中心点的距离的倒数作为ABC算法适应度,并将适应度值较高个体定义为蜜源。通过引领蜂在运动范围内的粗粒度遍历和跟随蜂的细粒度探索,不断搜寻适应度较高个体,并且更新蜜源,直至ABC算法稳定后确定较优蜜源位置为聚类中心。采用ABC优化得到的聚类中心进行K均值聚类。试验结果表明,通过合理设置ABC搜索边界,并引入蜂群位置的量子表示,可有效增强ABC对聚类中心的搜索精度。相比于常用聚类算法,QABC+K均值算法的聚类性能更优。 相似文献
3.
基于APSO的模糊聚类算法 总被引:1,自引:0,他引:1
利用改进的自适应粒子群优化算法(APSO)较强全局寻优、快速收敛的特点和模糊C-均值算法(FCM)对初始值敏感、容易陷入局部最优的缺点.提出一种基于自适应粒子群优化算法的模糊聚类算法(APFM).新算法有效的克服了FCM算法的缺点,同时增强了APSO算法全局搜索和跳出局部最优的能力.实验表明:新算法与单一的FCM和APSO算法相比聚类更准确,效率更高. 相似文献
4.
5.
基于蚁群聚类算法的模糊神经网络 总被引:1,自引:0,他引:1
提出了一种基于蚁群聚类的模糊神经网络算法,神经网络采用RBF网络结点结构,聚类采用二级结构蚁群聚类算法作为一级聚类而模糊C-均值聚类(FCM)用于二级聚类。将上述聚类方法用于模糊神经网络构建中,仿真结果表明具有并行实时性、聚类能力强的特点。 相似文献
6.
提出了一种基于蚁群算法(ACG)的模糊动态C-均值聚类算法的声纹识别,该算法首先利用蚁群算法的较强处理局部极值的能力,克服了算法在选取聚类中心点时采用随机选取易使得迭代过程陷入局部最优解的缺点,动态地确定了聚类中心和数目.两者有机结合起来可以寻求到具有全局分布特性的最优聚类.将此算法运用于声纹识别上,从语音信号中提取待识别的特征矢量集,对待识别声纹信号进行识别.实验证明,该算法解决了算法对初始值敏感,易陷入局部最优的问题,且计算简单,识别率较高,具有较好的鲁棒性. 相似文献
7.
李伟 《哈尔滨商业大学学报(自然科学版)》2013,29(4)
目前的FCM类型的算法聚类数目的确定需要聚类原形参数的先验知识,否则算法就会产生误导.为了提高图像分割算法的抗噪性能,用K均值聚类算法简单、快速的优点对模糊C均值聚类算法进行改进.结合图像的邻域信息,对图像的直方图作均衡化处理,改善图像质量,通过自适应滤波,降低噪声对分割效果的影响.先用K均值聚类算法对图像进行分割,快速的获得较为准确的聚类中心和初次分割图像,避免了FCM算法中初始聚类中心选择不当造成的死点问题.用邻域灰度均值信息代替传统模糊C均值聚类算法中的灰度信息,对K均值聚类得到的图像作二次分割.该方法能更好的抑制噪声的干扰,提高了聚类算法的分割精确度. 相似文献
8.
模糊C-均值聚类算法通过迭代的爬山技术来寻找问题的最优解,是一种局部搜索算法,容易受初始值的影响而陷入局部极小值.遗传算法是一种应用广泛的全局优化算法,是一种与求解问题无关的算法模式,能够有效解决模糊C-均值聚类算法对初始化敏感的问题,利用改进后的遗传算法能更好地解决聚类问题. 相似文献
9.
基于粒子群优化算法的模糊C-均值聚类 总被引:15,自引:0,他引:15
利用粒子群优化(PSO)算法全局寻优、 快速收敛的特点, 结合模糊C 均值(FCM)算法提出一种新的模糊聚类算法. 新算法用PSO算法代替了FCM算法的基于梯度下降的迭代过程, 使算法具有很强的全局搜索能力, 很大程度上避免了FCM算法易陷入局部极小的缺陷; 同时也降低了FCM算法对初始值的敏感度. 实验结果表明, 与FCM相比本文算法聚类更为准确, 效率更高. 相似文献
10.
文章阐述了模糊C-均值聚类算法(FCM)原理及存在的缺点,通过将粒子群优化算法思想应用到模糊聚类算法中,对模糊聚类算法进行了优化设计.实验证明,改进的算法具有较好的全局最优解,克服了传统模糊C聚类算法的不足,聚类效果优于单一使用FCM算法. 相似文献
11.
针对大数据背景下基于划分的聚类算法中存在参数寻优能力不佳、初始中心敏感、数据倾斜等问题,提出一种基于MapReduce和人工蜂群(artificial bee colony,ABC)算法的并行划分聚类(the partitioning-based clustering algorithm by using im-prove artificial bee colony based on MapReduce,MR-PBIABC)算法.首先,提出基于反向学习和聚类准则函数的初始化策略(backward learning and the clustering criterion function,BLCCF),提升人工蜂群算法搜索的解质量,并将ABC算法和人工鱼群(artificial fish colony,AFS)算法结合,提出改进人工蜂群(improve artificial bee colony,IABC)算法,通过利用AFS算法最优解能力较强的特性,来提高ABC算法的寻优能力;其次,根据改进的人工蜂群算法IABC获取初始聚类中心,提出相对熵策略(rela-tive entropy strategy,RES)衡量人工鱼间的距离,保证获得的初始聚类中心是最优人工鱼状态,从而有效避免了随机选取初始聚类中心,引起的初始中心敏感的问题;再次,设计数据均衡策略(data balancing strategy,DBS),通过动态收集节点负载并分配节点间的负载,解决了节点上数据倾斜的问题;最后,结合MapReduce计算模型,并行挖掘簇中心,生成最终聚类结果.实验结果表明,MR-PBIABC算法的聚类效果更佳,同时在大数据环境下,能有效地提高并行计算的效率. 相似文献
12.
基于蜂群算法的多小波图像去噪研究 总被引:1,自引:1,他引:1
针对在多小波图像去噪中阈值难以选取问题,提出基于群体智能算法—人工蜂群算法(artificial bee colonyalgorithm,ABC)优化多小波阈值。详细介绍了群体智能算法的发展历程和分类,阐述了ABC算法的基本原理、工作流程,及其优化多小波阈值在图像去噪中的具体步骤,比较了遗传算法(genetic algorithm,GA)、粒子群算法(par-ticle swarm optimization,PSO)、蚁群算法(antcolonyoptimization,ACO)以及ABC算法4种算法各自的优缺点。将提出的方法与GA算法和PSO算法优化多小波阈值进行了对比,通过仿真,证明提出的算法可以有效地去除高斯白噪声,提高图像的峰值信噪比(peak signal to noise ratio,PSNR),具有很好的去噪效果。 相似文献
13.
人工蜂群算法中蜜蜂在开采蜜源时,随机选择维度,随意决定开采方向和步伐来搜索新蜜源,没有利用以往的搜索经验,导致其收敛速度过慢.对此提出了基于行动轨迹的人工蜂群算法,记录跟随蜜蜂开采蜜源的行动轨迹,并以此为经验引导下一次开采,以提高人工蜂群算法的开采能力.通过对优化函数寻优测试,实验结果表明该算法不仅加快收敛速度,提高寻优能力,还具有良好的鲁棒性和稳定性. 相似文献
14.
针对人工蜂群算法存在后期收敛速度慢、局部搜索能力差和易陷入局部最优的问题,提出一种基于交叉算子的改进人工蜂群算法.该算法利用佳点集方法产生初始种群,使得初始化个体尽可能均匀地分布在搜索空间;随机选择食物源位置与当前最优食物源位置进行算术交叉操作,引导群体向全局最优解靠近,提高算法的局部搜索能力和加快收敛速度.通过5个高维标准测试函数的实验结果表明新算法的有效性. 相似文献
15.
针对经典人工蜂群算法收敛速率较慢,后期易陷入局部最优解的不足,本文将粒子群算法中"全局最优"的思想引入到人工蜂群算法的改进过程,从而形成了一种新的人工蜂群改进算法——粒子蜂群算法.首先,提出了趋优度的概念,用来衡量引领蜂在有限次迭代过程中向全局最优解靠近或远离的程度,趋优度值可以评价个体的"发展潜力",趋优度值越低的个体,越需要增大变异的程度,以便找到质量更优的解.其次,专门设计了一种新的蜜蜂群体——粒子蜂,在引领蜂变异阶段根据趋优度的大小将引领蜂变异为侦查蜂和粒子蜂,粒子蜂的出现在很大程度上增加了种群的多样性,拓展了算法的搜索范围.然后,通过粒子蜂群算法种群序列是一个有限齐次马尔科夫链和种群进化单调性的分析,验证了本文所提算法的种群序列依概率1收敛于全局最优解集.最后,将本文所提算法应用于多个常见测试函数,并与经典蜂群算法、近年其他文献改进蜂群算法进行了仿真对比研究,仿真结果表明本文所提算法确实加大了种群的分散度、扩宽了搜索范围,从而具有更快的收敛速度和更高的寻优精度 相似文献
16.
参数的选择直接影响着最小二乘支持向量机(LSSVM)的泛化性能和回归效验,是确保LSSVM优秀性能的关键.为了解决以上问题,对人工蜂群算法(ABC)进行了改进,引入新解越界处理方法,研究了一种基于双种群策略的蜂群算法,同时提出提出一种运行时参数调整方法,然后验证优化后的算法IIABC的准确性与健壮性.燃气回归分析采用平均绝对百分比误差(MAPE)作为IIABC算法基准方法,实验结果表明基于IIABC-LSSVM预测结果比IABC-LSSVM有着更高的准确性. 相似文献
17.
空间资源调度问题在满足时间和空间资源约束的前提下,追求项目工期最短以及空间资源利用的最大化,针对该问题对空间资源进行抽象,建立数学模型,在配置空间理论基础上,提出基于人工蜂群的时空资源受限项目调度算法。对不同规模的问题实例采用不同的算法进行对比,结果表明本文算法在相对较短时间内可以获得较优的调度方案。 相似文献
18.
《合肥工业大学学报(自然科学版)》2016,(1)
针对共形阵列中主瓣约束下的波束形成问题,文章提出了一种基于改进人工蜂群算法(Improved Artificial Bee Colony algorithm,IABC)的低副瓣方向图综合算法。算法首先将共形阵列的波束形成问题归纳为一个与目标方向图距离最小化的优化问题。通过引入多维邻域搜索策略,改善人工蜂群算法的局部搜索效率,同时通过增加罚函数来抑制副瓣电平,对权值矢量空间进行搜索,寻求最优权值矢量,最终得到与期望逼近的阵列方向图。实验结果表明该算法能够很好地逼近期望方向图,收敛速度快,为实现共形阵列下的波束形成提供了有价值的参考。 相似文献
19.
为实现认知无线电系统参数的自适应调整功能,提出了一种基于二进制人工蜂群算法的认知无线电决策引擎。将认知无线电决策问题转化为多目标函数优化问题,并采用加权和方法将复杂的多目标函数优化问题归一化为简单的单目标函数优化问题。采用二进制人工蜂群算法对此优化问题进行求解,实现对无线电系统参数的优化调整。最后,通过一种多载波系统对算法性能进行仿真分析,仿真结果验证了该算法的有效性和实用性。 相似文献
20.
针对传统盲源分离算法收敛速度与分离性能间的矛盾,提出一种基于改进人工蜂群算法的盲源分离算法.该算法利用信号的峰度绝对值作为被优化目标函数,对人工蜂群算法中跟随蜂阶段的搜索过程进行改进,使人工蜂群算法在初始阶段可以快速收敛到最优解所在区域,具有更高的收敛精度.使用改进后的人工蜂群算法对传统盲源分离算法中的初始分离矩阵进行优化,再利用优化的初始分离矩阵进行信号分离.仿真结果表明,改进后的算法能够显著加快收敛速度并保持较好的分离性能值,较好地解决了收敛速度与分离性能间的矛盾. 相似文献