首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new TOF telescope has been constructed for thin film and surface analysis. The timing system consists of two electrostatic mirror type detectors of Busch design. The detection efficiency of timing stations for very light ions was significantly improved using DLC (diamond like carbon) foils coated with LiF instead of the conventionally used carbon foils. Ion energy is measured by a 300 mm2 ULTRA ion-implanted silicon detector. For the ERDA measurements with heavy and energetic ion beams, a time-of-flight (TOF) spectrometer is positioned at 37.5°. Spectrometer can be easily moved to 120° backward angle for time-of-flight RBS analysis with low energy beam of light ions. Positioning and fine adjustments of sample orientation are performed with a motorized sample stage. The same spectrometer can be also installed at the ion microprobe scattering chamber for 3D elemental imaging.  相似文献   

2.
Wurtzite GaN epilayers irradiated at room temperature with 308 MeV 129Xe35+ ions to fluences of 1 × 1013 and 3 × 1013 cm−2 have been studied by contact mode atomic force microscopy (AFM), high-resolution X-ray diffraction (HRXRD), micro-Raman scattering and photoluminescence (PL) spectroscopy. The AFM images showed that the surface of GaN films was etched efficiently due to the Xe ion irradiation. The initial step-terrace structure on GaN surface was eliminated completely at a fluence of 3 × 1013 cm−2. HRXRD and Raman results indicated that the Xe ion irradiation led to a homogenous lattice expansion throughout the entire ∼3 μm-thick GaN films. The lattice expansion as well as the biaxial compressive stress of the films was increasing with the increase of ion fluence. PL measurements showed that a dominant yellow luminescence band in the as-grown GaN films disappeared, but a blue and a green luminescence bands were produced after irradiation. Based on these results, the strong electronic excitation effect of 308 MeV Xe ions in GaN is discussed.  相似文献   

3.
We report damage creation and annihilation under energetic ion bombardment at a fixed fluence. MOCVD grown GaN thin films were irradiated with 80 MeV Ni ions at a fluence of 1 × 1013 ions/cm2. Irradiated GaN thin films were subjected to rapid thermal annealing for 60 s in nitrogen atmosphere to anneal out the defects. The effects of defects on luminescence were explored with photoluminescence measurements. Room temperature photoluminescence spectra from pristine sample revealed presence of band to band transition besides unwanted yellow luminescence. Irradiated GaN does not show any band to band transition but there is a strong peak at 450 nm which is attributed to ion induced defect blue luminescence. However, irradiated and subsequently annealed samples show improved band to band transitions and a significant decrease in yellow luminescence intensity due to annihilation of defects which were created during irradiation. Irradiation induced effects on yellow and blue emissions are discussed.  相似文献   

4.
Gallium nitride (GaN) epilayers have been grown by chloride vapour phase epitaxy (Cl-VPE) technique and the grown GaN layers were irradiated with 100 MeV Ni ions at the fluences of 5 × 1012 and 2 × 1013 ions/cm2. The pristine and 100 MeV Ni ions irradiated GaN samples were characterized using X-ray diffraction (XRD), UV-visible transmittance spectrum, photoluminescence (PL) and atomic force microscopy (AFM) analysis. XRD results indicate the presence of gallium oxide phases after Ni ion irradiation, increase in the FWHM and decrease in the intensity of the GaN (0 0 0 2) peak with increasing ion fluences. The UV-visible transmittance spectrum and PL measurements show decrease in the band gap value after irradiation. AFM images show the nanocluster formation upon irradiation and the roughness value of GaN increases with increasing ion fluences.  相似文献   

5.
A study of the effects of ion irradiation on the surface mechanical behavior and shrinkage of organic/inorganic modified silicate thin films was performed. The films were synthesized by sol-gel processing from tetraethylorthosilicate (TEOS) and methyltriethoxysilane (MTES) precursors and spin-coated onto Si substrates. The sol viscosity and the spin velocity were adjusted so that the films produced had a final thickness ranging from 580 to 710 nm after heat treatment. The ion species and incident energies used were selected such that the projected ion range was greater than the film thickness, resulting in fully irradiated films. After heat treatment at 300 °C for 10 min, the films were irradiated with 125 keV H+, 250 keV N2+ and 2 MeV Cu+ ions with fluences ranging from 1 × 1014 to 1 × 1016 ions/cm2. Both hardness and reduced elastic modulus were seen to exhibit a monotonic increase with fluence for all three ion species. Also, H loss was found to increase monotonically with increase in fluence, while the film thickness was found to decrease with increase in fluence.  相似文献   

6.
Swift heavy ion irradiation has been successfully used to modify the structural, optical, and gas sensing properties of SnO2 thin films. The SnO2 thin films prepared by sol-gel process were irradiated with 75 MeV Ni+ beam at fluences ranging from 1 × 1011 ion/cm2 to 3 × 1013 ion/cm2. Structural characterization with glancing angle X-ray diffraction shows an enhancement of crystallinity and systematic change of stress in the SnO2 lattice up to a threshold value of 1 × 1013 ions/cm2, but decrease in crystallinity at highest fluence of 3 × 1013 ions/cm2. Microstructure investigation of the irradiated films by transmission electron microscopy supports the XRD observations. Optical properties studied by absorption and PL spectroscopies reveal a red shift of the band gap from 3.75 eV to 3.1 eV, and a broad yellow luminescence, respectively, with increase in ion fluence. Gas response of the irradiated SnO2 films shows increase of resistance on exposure to ammonia (NH3), indicating p-type conductivity resulting from ion irradiation.  相似文献   

7.
We report here the physico-chemical changes brought about by high electronic energy deposition of gold ions in HCl doped polyaniline (PANI) thin films. PANI thin films were synthesized by in situ polymerization technique. The as-synthesized PANI thin films of thickness 160 nm were irradiated using Au7+ ion of 100 MeV energy at different fluences, namely, 5 × 1011 ions/cm2 and 5 × 1012 ions/cm2, respectively. A significant change was seen after irradiation in electrical and photo conductivity, which may be related to increased carrier concentration, and structural modifications in the polymer film. In addition, the high electronic energy deposition showed other effects like cross-linking of polymer chains, bond breaking and creation of defect sites. AFM observations revealed mountainous type features in all (before and after irradiation) PANI samples. The average size (diameter) and density of such mountainous clusters were found to be related with the ion fluence. The AFM profiles also showed change in the surface roughness of the films with respect to irradiation, which is one of the peculiarity of the high electronic energy deposition technique.  相似文献   

8.
X-ray diffraction (XRD), attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR) and photoluminescence (PL) were applied to study yellow and red luminescence properties of as-grown and Mg-implanted n-type wurtzite GaN films grown on sapphire substrates by metal-organic chemical vapor deposition. The influence of different Mg-implanted fluences on yellow and red luminescence was studied. The as-grown GaN thin films exhibited intense broad yellow emission which reduces drastically after Mg ion implantation. A red luminescence band at approximately 750 nm appears when the Mg implantation fluence is low (1013 cm−2) whereas a yellow luminescence band suddenly increases at a Mg-implanted fluence of 1016 cm−2. The possible reasons of these phenomena are discussed.  相似文献   

9.
We report results from our recent experiments on guiding of Ar8+ ions through a single tapered glass capillary with an inlet diameter of 1 mm, an outlet diameter of 0.15 mm and a length of 45 mm. The profile width of the transmitted ion beam and the guiding power of the used glass capillary has been measured at a kinetic energy in the range of 8 keV up to 60 keV using a position sensitive detector. The charge up of the capillary and the evolution of the guiding effect is shown for a tilt angle of Ψ = 4°. The charge up of the inner walls of the tapered glass capillary causes a compression of the incident ion beam by a factor of 8. We found high guiding angles and small profile width of the transmitted ion beam in comparison to the transmission of highly charged ions through nanocapillaries in thin foils. A suppression of the transmission at small tilt angles and low kinetic energies has been observed.  相似文献   

10.
The ion photon emission microscope (IPEM) is a technique developed at Sandia National Laboratories (SNL) to study radiation effects in integrated circuits with high energy, heavy ions, such as those produced by the 88” cyclotron at Lawrence Berkeley National Laboratory (LBNL). In this method, an ion-luminescent film is used to produce photons from the point of ion impact. The photons emitted due to an ion impact are imaged on a position-sensitive detector to determine the location of a single event effect (SEE). Due to stringent resolution, intensity, wavelength, decay time, and radiation tolerance demands, an engineered material with very specific properties is required to act as the luminescent film. The requirements for this material are extensive. It must produce a high enough induced luminescent intensity so at least one photon is detected per ion hit. The emission wavelength must match the sensitivity of the detector used, and the luminescent decay time must be short enough to limit accidental coincidences. In addition, the material must be easy to handle and its luminescent properties must be tolerant to radiation damage. Materials studied for this application include plastic scintillators, GaN and GaN/InGaN quantum well structures, and lanthanide-activated ceramic phosphors. Results from characterization studies on these materials will be presented; including photoluminescence, cathodoluminescence, ion beam induced luminescence, luminescent decay times, and radiation damage. Results indicate that the ceramic phosphors are currently proving to be the ideal material for IPEM investigations.  相似文献   

11.
We have measured the fraction of the ions transmitted through nanocapillaries with their initial charge state for 200 keV Xe7+ ions impact on a polycarbonate (PC) foil with a thickness of 30 μm and a diameter of 150 nm. An Au film was evaporated on both the front and back side. It is found that more than 97% of the transmitted ions remain in their initial charge state. Then, the transmitted ion fraction and the characteristic tilt angle of 40 keV Xe7+ ions through this foil and another one with the same thickness and diameter, but evaporated by Au only on the front side, were measured. By comparing the results of these two foils, the influence of the ions deposited in the capillary exit region on the transmitted ion fraction and the characteristic tilt angle is studied. In comparison with the foil evaporated by Au on both sides, the maximum transmitted ion fraction of the foil evaporated by Au on the front side only is nearly 4 times smaller. Also, the characteristic tilt angle is slightly decreased. These results are discussed within the models for the guiding effect.  相似文献   

12.
The three single layer Ce3Sb10 thin films were grown on silicon dioxide and quartz (suprasil) substrates with thicknesses of 297, 269 and 70 nm using ion beam assisted deposition (IBAD) technique. The high-energy cross plane Si ion bombardments with constant energy of 5 MeV have been performed with varying fluence from 1 × 1012, 1 × 1013, 1 × 1014, 1 × 1015 ions/cm2. The Si ions bombardment modified the thermoelectric properties of films as expected. The fluence and temperature dependence of cross plane thermoelectric parameters that are Seebeck coefficient, electrical and thermal conductivities were determined to evaluate the dimensionless figure of merit, ZT. Rutherford backscattering spectrometry (RBS) enabled us to determine the elemental composition of the deposited materials and layer thickness of each film.  相似文献   

13.
Transmission of a few keV impact energy Ne6+ ions through capillaries in anodic alumina membranes has been studied with different ion counting methods using an energy dispersive electrostatic spectrometer, a multichannel plate (MCP) array and sensitive current-measurement. In the present work, we focus our attention to the measurements with the MCP array. The alumina capillaries were prepared by electro-chemical oxidation of aluminium foils. For the present experiments guiding of 3-6 keV Ne6+ ions has been studied in two samples with capillary diameter of about 140 nm and 260 nm and with capillary length of about 15 μm. At these energies, the ions have been efficiently guided by the capillaries up to few degrees tilt angle. In this work, we compare the results obtained by the energy dispersive spectrometer to those studied by the MCP array.  相似文献   

14.
We have successfully developed a new method to reduce the amount of carbon buildup on thin cluster (less than 3.5 μg/cm2) carbon stripper foils by heating them with infrared radiation during beam bombardment. We studied the carbon buildup and the foil temperature on foil lifetime using a 2.0 ± 0.5 μA beam of 3.2-MeV Ne+ ions. It was found that the carbon buildup begins to rapidly suppress at 460 °C; further, at a foil temperature higher than approximately 820 °C, the initial foil thickness did not change until the foil ruptured. We also found that the carbon buildup shortens the lifetime of stripper foils.The foils treated by the newly developed present method could withstand the maximum and average total beam charges of 530 mC/cm2 and 340 mC/cm2, respectively, which are approximately 18 and 11 times larger than the values for the best commercially available foils and approximately 3 and 2 times greater than the values for the cluster foils that are not treated by this method.  相似文献   

15.
We have investigated the damage morphology and magnetic properties of titanium dioxide thin films following implantation with Fe ions. The titanium dioxide films, having a polycrystalline anatase structure, were implanted with 100 keV 56Fe+ ions to a total fluence of 1.3 × 1016 ions/cm2. The ion bombardment leads to an amorphized surface with no indication of the presence of secondary phases or Fe clusters. The ion-beam induced damage manifested itself by a marked change in surface morphology and film thickness. A room temperature ferromagnetic behaviour was observed by SQUID in the implanted sample. It is believed that the ion-beam induced damage and defects in the polycrystalline anatase film were partly responsible for the observed magnetic response.  相似文献   

16.
Titanium-nickel thin films have been deposited on float glass substrates by ion beam sputtering in 100% pure argon atmosphere. Sputtering is predominant at energy region of incident ions, 1000 eV to 100 keV. The as-deposited films were investigated by X-ray photoelectron spectroscopy (XPS) and atomic force microscope (AFM). In this paper we attempted to study the surface morphology and elemental composition through AFM and XPS, respectively. Core level as well as valence band spectra of ion-beam sputtered Ti-Ni thin films at various Ar gas rates (5, 7 and 12 sccm) show that the thin film deposited at 3 sccm possess two distinct peaks at binding energies 458.55 eV and 464.36 eV mainly due to TiO2. Upon increasing Ar rate oxidation of Ti-Ni is reduced and the Ti-2p peaks begin approaching those of pure elemental Ti. Here Ti-2p peaks are observed at binding energy positions of 454.7 eV and 460.5 eV. AFM results show that the average grain size and roughness decrease, upon increasing Ar gas rate, from 2.90 μm to 0.096 μm and from 16.285 nm to 1.169 nm, respectively.  相似文献   

17.
CdTe polycrystalline thin films possessing hexagonal phase regions are obtained by spray deposition in presence of a high electric field. Thin film samples are irradiated with 100 MeV Ag ions using Pelletron accelerator to study the swift heavy ion induced effects. The ion irradiation results in the transformation of the metastable hexagonal regions in the films to stable cubic phase due to the dense electronic excitations induced by beam irradiation. The phase transformation is seen from the X-ray diffraction patterns. The band gap of the CdTe film changes marginally due to ion irradiation induced phase transformation. The value changes from 1.47 eV for the as deposited sample to 1.44 eV for the sample irradiated at the fluence 1×1013 ions/cm2. The AFM images show a gradual change in the shape of the particles from rod shape to nearly spherical ones after irradiation.  相似文献   

18.
A detailed investigation of the surface morphology of the pristine and swift heavy ion (SHI) irradiated La0.7Sr0.3MnO3 (LSMO) thin film using atomic force microscope (AFM) is presented. Highly c-axis oriented LSMO thin films were grown on LaAlO3 (1 0 0) (LAO) substrates by the pulsed laser deposition (PLD) technique. The films were annealed at 800 °C for 12 h in air (pristine films) and subsequently, irradiated with SHI of oxygen and silver. The incident fluence was varied from 1 × 1012 to 1 × 1014 ions/cm2 and 1 × 1011 to 1 × 1012 ions/cm2 for oxygen and silver ions, respectively. X-ray diffraction (XRD) studies reveal that the irradiated films are strained. From the AFM images, various details pertaining to the surface morphology such as rms roughness (σ), the surface rms roughness averaged over an infinite large image (σ), fractal dimension (DF) and the lateral coherence length (ξ) were estimated using the length dependent variance measurements. In case of irradiated films, the surface morphology shows drastic modifications, which is dependent on the nature of ions and the incident fluence. However, the surface is found to remain self-affine in each case. In case of oxygen ion irradiated films both, σ and DF are observed to increase with fluence up to a dose value of 1 × 1013 ions/cm2. With further increase in dose value both σ and DF decreases. In case of silver ion irradiated films, σ and DF decrease with increase in fluence value in the range studied.  相似文献   

19.
Modifications of the C70 molecule (fullerene) under swift heavy ion irradiation are investigated. C70 thin films were irradiated with 120 MeV Au ions at fluences from 1 × 1012 to 3 × 1013 ions/cm2. The energetic ion impacts lead to the destruction of the C70 molecule. To investigate the stability of C70 fullerene, the damage cross-section and radius of the damaged cylindrical zones are evaluated by fitting the evanescence of C70 vibration modes recorded by Raman spectroscopy. Conductivity measurements together with Raman and optical absorption studies revealed that an irradiation fluence of 3 × 1013 ions/cm2 results in complete amorphization of the carbon structure of the fullerene molecules.  相似文献   

20.
Thin polystyrene (PS) films (Mw = 234,000) are spin coated on silicon substrates with a Chromium (Cr) layer as a sandwiched metallic layer that produces photoelectrons (by synchrotron X-rays). Earlier studies on synchrotron radiation damage in PS films, without metallic layer, have shown a decrease in interfacial roughness and a slight increase in thickness, at temperatures below Tg [A.G. Richter, R. Guico, K. Shull, J. Wang, Macromolecules 39 (2006) 1545]. Similar trend is observed in the presence of a thin layer of Cr film (∼2.5 nm). For the sample with a thick Cr layer the opposite effect was observed for X-ray radiation damage. For the 50 nm thick Cr film system thickness of the polystyrene film decreased by ≈4.4% which amount to a loss of about 0.021 nm3 per incident photon in the fluence range studied (6.8 × 109 photons mm−2 to 1 × 1014 photons mm−2). Interfacial roughness also increased from about 1.0 nm to 2.1 nm in the process. These effects are explained by invoking the presence of more number of X-ray induced photoelectrons and secondary electrons for 50 nm thick Cr film case compared to 2.5 nm thin film case.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号