首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Two separate genetic linkage maps for Chinese silver birch based on inter-simple sequence repeat (ISSR) and amplified fragment-length polymorphism (AFLP) were constructed by a pseudo-testcross mapping strategy. Eighty F1 progenies were obtained from the cross between two parental trees with desirable traits (the paternal one selected from ‘Qinghai’ and the maternal one from ‘Wangqing’). A total of 46 ISSR primers and 31 AFLP primers were employed to generate 102 ISSR and 355 AFLP polymorphic markers in the F1 progenies. About 5.7% of all the markers displayed high segregation distortion with a P value below 0.01 and such markers were not used for map constructions. The paternal map consisted of 137 loci, spread over 13 groups and spanned 694.2 cM at an average distance of 5.1 cM between the markers, while in the maternal map, 147 loci were distributed in 14 groups covering a map distance about 949.62 cM at an average distance of 6.5 cM. These initial maps can serve as the basis for developing a more detailed genetic map.  相似文献   

2.
A genetic linkage map of the tetraploid white yam (Dioscorea rotundata Poir.) was constructed based on 341 co-dominantly scored amplified fragment length polymorphism (AFLP) markers segregating in an intraspecific F1 cross. The F1 mapping population was produced by crossing a landrace cultivar TDr 93-1 as female parent to a breeding line TDr 87/00211 as the male parent. The marker segregation data were split into maternal and paternal data sets, and separate genetic linkage maps were constructed since the mapping population was an F1 cross between two presumed heterozygous parents. The markers segregated like a diploid cross-pollinator population suggesting that the D. rotundata genome is an allo-tetraploid (2n = 4x = 40). The maternal map comprised 155 markers mapped on 12 linkage groups with a total map length of 891 cM. Three linkage groups consisted of maternal parent markers only. The paternal map consisted of 157 markers mapped on 13 linkage groups with a total map length of 852 cM. Three and one quantitative trait loci (QTLs) with effects on resistance to Yam Mosaic Virus (YMV) were identified on the maternal and paternal linkage maps, respectively. Prospects for detecting more QTLs and using marker-assisted selection in white yam breeding appear good, but this is subject to the identification of additional molecular markers to cover more of the genome.  相似文献   

3.
Based on a two-way pseudo-testcross strategy, high density and complete coverage linkage maps were constructed for the maternal and paternal parents of an intraspecific F2 pedigree of Populus deltoides. A total of 1,107 testcross markers were obtained, and the mapping population consisted of 376 progeny. Among these markers, 597 were from the mother, and were assigned into 19 linkage groups, spanning a total genetic distance of 1,940.3 cM. The remaining 519 markers were from the father, and were also were mapped into 19 linkage groups, covering 2,496.3 cM. The genome coverage of both maps was estimated as greater than 99.9% at 20 cM per marker, and the numbers of linkage groups of both maps were in accordance with the 19 haploid chromosomes in Populus. Marker segregation distortion was observed in large contiguous blocks on some of the linkage groups. Subsequently, we mapped the segregation distortion loci in this mapping pedigree. Altogether, eight segregation distortion loci with significant logarithm of odds supports were detected. Segregation distortion indicated the uneven transmission of the alternate alleles from the mapping parents. The corresponding genome regions might contain deleterious genes or be associated with hybridization incompatibility. In addition to the detection of segregation distortion loci, the established genetic maps will serve as a basic resource for mapping genetic loci controlling traits of interest in future studies.  相似文献   

4.
Genetic linkage maps have been increasingly developed for a wide variety of plants, using segregating populations such as F2s or backcrosses between inbred lines. These pedigrees are rarely available in outbred species like forest trees which have long generation times. Thus genetic mapping studies have to use peculiar pedigrees and markers in appropriate configurations. We constructed single-tree genetic linkage maps of European larch (Larix decidua Mill.) and Japanese larch [Larix kaempferi (Lamb.) Carr.] using segregation data from 112 progeny individuals of an hybrid family. A total of 266 markers (114 AFLP, 149 RAPD and 3 ISSR loci) showing a testcross configuration, i.e.heterozygous in one parent and null in the other parent, were grouped at LOD 4.0, θ=0.3. The maternal parent map (L. decidua)consisted of 117 markers partitioned within 17 linkage groups (1152 cM) and the paternal parent map (L. kaempferi) had 125 markers assembled into 21 linkage groups (1206 cM). The map distance covered by markers was determined by adding a 34.7-cM independence distance at the end of each group and unlinked marker. It reached 2537 cM and 2997 cM respectively for European larch and Japanese larch, and represented respectively a 79.6% and 80.8% coverage of the overall genome. A few 3:1 segregating markers were used to identify homologous linkage groups between the European larch and the Japanese larch genetic maps. The PCR-based molecular markers allowed the construction of genetic maps, thus ensuring a good coverage of the larch genome for further QTL detection and mapping studies. Received: 15 March 1999 / Accepted: 29 March 1999  相似文献   

5.
An integrated DArT-SSR linkage map of durum wheat   总被引:2,自引:0,他引:2  
Genetic mapping in durum wheat (Triticum durum Desf.) is constrained by its large genome and allopolyploid nature. We developed a Diversity Arrays Technology (DArT) platform for durum wheat to enable efficient and cost-effective mapping and molecular breeding applications. Genomic representations from 56 durum accessions were used to assemble a DArT genotyping microarray. Microsatellite (SSR) and DArT markers were mapped on a durum wheat recombinant inbred population (176 lines). The integrated DArT-SSR map included 554 loci (162 SSRs and 392 DArT markers) and spanned 2022 cM (5 cM/marker on average). The DArT markers from durum wheat were positioned in respect to anchor SSRs and hexaploid wheat DArT markers. DArT markers compared favourably to SSRs to evaluate genetic relationships among the durum panel, with 1315 DArT polymorphisms found across the accessions. Combining DArT and SSR platforms provides an efficient and rapid method of generating linkage maps in durum wheat.  相似文献   

6.
Traits that differentiate cross-fertile plant species can be dissected by genetic linkage analysis in interspecific hybrids. Such studies have been greatly facilitated in Eucalyptus tree species by the recent development of Diversity Arrays Technology (DArT) markers. DArT is an affordable, high-throughput marker technology for the construction of high-density genetic linkage maps. Eucalyptus grandis and Eucalyptus urophylla are commonly used to produce fast-growing, disease tolerant hybrids for clonal eucalypt plantations in tropical and subtropical regions. We analysed 7,680 DArT markers in an F2 pseudo-backcross mapping pedigree based on an F1 hybrid clone of E. grandis and E. urophylla. A total of 2,440 markers (31.7%) were polymorphic and could be placed in linkage maps of the F1 hybrid and two pure-species backcross parents. An integrated genetic linkage map was constructed for the pedigree resulting in 11 linkage groups (n = 11) with 2,290 high-confidence (LOD ≥ 3.0) markers and a total map length of 1,107.6 cM. DNA sequence analysis of the mapped DArT marker fragments revealed that 43% were located in protein coding regions and 90% could be placed in the recently completed draft genome assembly of E. grandis. Together with the anchored genomic sequence information, this linkage map will allow detailed genetic dissection of quantitative traits and hybrid fitness characters segregating in the F2 progeny and will facilitate the development of markers for molecular breeding in Eucalyptus.  相似文献   

7.
With a "two-way pseudo-testcross" mapping strategy, we applied the amplified fragment length polymorphism (AFLP) markers to construct two moderate density genetic linkage maps for Laminaria. The linkage maps were generated from the 60 progenies of the F1 cross family (Laminaria iongissima Aresch. × L. Japonica Miyabe) with twenty pairs of primer combinations. Of the 333 polymorphic loci scored in 60 progenies, 173 segregated in a 1:1 ratio, corresponding to DNA polymorphisms heterozygous in a single parent, and the other 58 loci existing in both parents followed a 3:1 Mendelian segregation ratio. Among the loci with 1:1 segregating ratios, 79 loci were ordered in 14 linkage groups (648.6 cM) of the paternal map, and 72 loci were ordered in 14 linkage groups (601.9 cM) of the maternal map. The average density of loci was approximately 1 per 8 cM. To Investigate the homologies between two parental maps, we used 58 loci segregated 3:1 for further analysis, and deduced one homologous linkage group. The linkage data developed in these maps will be useful for detecting loci-controlling commercially important traits for Laminaria.  相似文献   

8.
In accordance with pseudo-testcross strategy, the first genetic linkage map of Eucommia ulmoides Oliv. was constructed by an F1 population of 122 plants using amplified fragment length polymorphism (AFLP) markers. A total of 22 AFLP primer combinations generated 363 polymorphic markers. We selected 289 markers segregating as 1:1 and used them for constructing the parent-specific linkage maps. Among the candidate markers, 127 markers were placed on the maternal map LF and 108 markers on the paternal map Q1. The maternal map LF spanned 1116.1 cM in 14 linkage groups with a mean map distance of 8.78 cM; the paternal map Q1 spanned 929.6 cM in 12 linkage groups with an average spacing of 8.61 cM. The estimated coverage of the genome through two methods was 78.5 and 73.9% for LF, and 76.8 and 71.2% for Q1, respectively. This map is the first linkage map of E. ulmoides and provides a basis for mapping quantitative-trait loci and breeding applications.  相似文献   

9.
Gan S  Shi J  Li M  Wu K  Wu J  Bai J 《Genetica》2003,118(1):59-67
Moderate-density molecular maps were constructed for the genomes of Eucalyptus urophylla S. T. Blake and E. tereticornis Smith using RAPD markers and an interspecific cross between the two species. One hundred and eighty-three primers were employed to generate 245 and 264 parent-specific markers in E. urophylla and E. tereticornis, respectively, as well as 49 parent-shared markers. The normally segregating markers, including 208 (84.9%) specific to maternal E. urophylla, 175 (66.3%) to paternal E. tereticornis, and 48 shared by both parents, were used for framework map construction for each parental species. For maternal E. urophylla, the linkage map consisted of 23 linkage groups, 160 framework markers, and 60 accessory markers, defining a total map distance of 1504.6 cM and an average interval of 11.0 ± 8.07 cM. For paternal E. tereticornis, the linkage map contained 23 linkage groups, 126 framework markers, and 92 accessory markers, defining a total map distance of 1035.7 cM and an average interval of 10.1 ± 7.23 cM. Genome length was estimated at 1585.7 and 1507.5 cM for E. urophylla and E. tereticornis, respectively, indicating map coverage of 94.9 and 68.7% of the corresponding genomes. Construction of such maps will be valuable for quantitative trait loci (QTLs) detection, marker-assisted selection (MAS), comparative mapping, and whole genome based fingerprint characterization in Eucalyptus breeding programs.  相似文献   

10.
Tall fescue (Festuca arundinacea Schreb.) is commonly grown as forage and turf grass in the temperate regions of the world. Here, we report the first genetic map of tall fescue constructed with PCR-based markers. A combination of amplified fragment length polymorphisms (AFLPs) and expressed sequence tag-simple sequence repeats (EST-SSRs) of both tall fescue and those conserved in grass species was used for map construction. Genomic SSRs developed from Festuca × Lolium hybrids were also mapped. Two parental maps were initially constructed using a two-way pseudo-testcross mapping strategy. The female (HD28-56) map included 558 loci placed in 22 linkage groups (LGs) and covered 2,013 cM of the genome. In the male (R43-64) map, 579 loci were grouped in 22 LGs with a total map length of 1,722 cM. The marker density in the two maps varied from 3.61 cM (female parent) to 2.97 (male parent) cM per marker. These differences in map length indicated a reduced level of recombination in the male parent. Markers that revealed polymorphism within both parents and showed 3:1 segregation ratios were used as bridging loci to integrate the two parental maps as a bi-parental consensus. The integrated map covers 1,841 cM on 17 LGs, with an average of 54 loci per LG, and has an average marker density of 2.0 cM per marker. Homoeologous relationships among linkage groups of six of the seven predicted homeologous groups were identified. Three small groups from the HD28-56 map and four from the R43-64 map are yet to be integrated. Homoeologues of four of those groups were detected. Except for a few gaps, markers are well distributed throughout the genome. Clustering of those markers showing significant segregation distortion (23% of total) was observed in four of the LGs of the integrated map.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

11.
New microsatellites markers [simple sequence repeat (SSR)] have been isolated from rose and integrated into an existing amplified fragment-length polymorphism genetic map. This new map was used to identify quantitative trait locus (QTL) controlling date of flowering and number of petals. From a rose bud expressed sequence tag (EST) database of 2,556 unigenes and a rose genomic library, 44 EST-SSRs and 20 genomic-SSR markers were developed, respectively. These new rose SSRs were used to expand genetic maps of the rose interspecific F1 progeny. In addition, SSRs from other Rosaceae genera were also tested in the mapping progeny. Genetic maps for the two parents of the progeny were constructed using pseudo-testcross mapping strategy. The maps consist of seven linkage groups of 105 markers covering 432 cM for the maternal map and 136 markers covering 438 cM for the paternal map. Homologous relationships among linkage groups between the maternal and paternal maps were established using SSR markers. Loci controlling flowering traits were localised on genetic maps as a major gene and QTL for the number of petals and a QTL for the blooming date. New SSR markers developed in this study will provide tools for the establishment of a consensus linkage map for roses that combine traits and markers in various rose genetic maps.  相似文献   

12.
A genetic linkage map of an intraspecific cross between 2 Silene vulgaris s.l. ecotypes is presented. Three-hundred AFLP markers from 2 different restriction enzyme combinations were used to genotype an F2 mapping population. Maternal and paternal pure-coupling phase maps with 114 and 186 markers on 12 and 13 linkage groups, respectively, were constructed. Total map length of the paternal and maternal maps are 547 and 446 Kosambi cM, respectively. Nearly half of the markers (49%) exhibited significant transmission ratio distortion. Genome coverage and potential causes of the observed segregation ratio distortions are discussed. The maps represent a first step towards the identification of quantitative trait loci associated with habitat adaptation in the non-model species Silene vulgaris.  相似文献   

13.
We present the first genetic maps of globe artichoke (Cynara cardunculus var. scolymus L. 2n=2x=34), constructed with a two-way pseudo-testcross strategy. A F1 mapping population of 94 individuals was generated between a late-maturing, non-spiny type and an early-maturing spiny type. The 30 AFLP, 13 M-AFLP and 9 S-SAP primer combinations chosen identified, respectively, 352, 38 and 41 polymorphic markers. Of 32 microsatellite primer pairs tested, 12 identified heterozygous loci in one or other parent, and 7 were fully informative as they segregated in both parents. The female parent map comprised 204 loci, spread over 18 linkage groups and spanned 1330.5 cM with a mean marker density of 6.5 cM. The equivalent figures for the male parent map were 180 loci, 17 linkage groups, 1239.4 and 6.9 cM. About 3% of the AFLP and AFLP-derived markers displayed segregation distortion with a P value below 0.01, and were not used for map construction. All the SSR loci were included in the linkage analysis, although one locus did show some segregation distortion. The presence of 78 markers in common to both maps allowed the alignment of 16 linkage groups. The maps generated provide a firm basis for the mapping of agriculturally relevant traits, which will then open the way for the application of a marker-assisted selection breeding strategy in this species.  相似文献   

14.
A genetic linkage map of the tetraploid water yam (Dioscorea alata L.) genome was constructed based on 469 co-dominantly scored amplified fragment length polymorphism (AFLP) markers segregating in an intraspecific F1 cross. The F1 was obtained by crossing two improved breeding lines, TDa 95/00328 as female parent and TDa 87/01091 as male parent. Since the mapping population was an F1 cross between presumed heterozygous parents, marker segregation data from both parents were initially split into maternal and paternal data sets, and separate genetic linkage maps were constructed. Later, data analysis showed that this was not necessary and thus the combined markers from both parents were used to construct a genetic linkage map. The 469 markers were mapped on 20 linkage groups with a total map length of 1,233 cM and a mean marker spacing of 2.62 cM. The markers segregated like a diploid cross-pollinator population suggesting that the water yam genome is allo-tetraploid (2n = 4x = 40). QTL mapping revealed one AFLP marker E-14/M52-307 located on linkage group 2 that was associated with anthracnose resistance, explaining 10% of the total phenotypic variance. This map covers 65% of the yam genome and is the first linkage map reported for D. alata. The map provides a tool for further genetic analysis of traits of agronomic importance and for using marker-assisted selection in D. alata breeding programmes. QTL mapping opens new avenues for accumulating anthracnose resistance genes in preferred D. alata cultivars.  相似文献   

15.
Linkage maps were prepared for two Araucaria cunninghamii individuals (coded H15 and Gil24) using the pseudotestcross strategy in a wide interprovenance cross. The maternal map for individual H15 contains 14 linkage groups (haploid chromosome number=13), comprising 51 amplified fragment length polymorphisms (AFLP) and 1 microsatellite; 17 markers remain unlinked. The map covered 1,290 cM [Kosambi (K)], representing 89% of the estimated genome size. The paternal map for individual Gil24 was shorter, 633 cM (K), consisted of eight linkage groups, with an average interval of 19.8 cM (K). The difference in map lengths was due to the larger number of informative markers for maternal parent (52 loci compared with 25 loci in the paternal parent). There was no significant difference in map lengths once maps were corrected for different numbers of loci. Overall, the number of segregating markers identified was surprisingly low for a wide interprovenance cross in an outcrossing tree species. For AFLP, a low average of 2.2 segregating markers per primer combination was obtained, and only 4 out of 29 microsatellite loci were informative in the cross. This low level of marker variation appears to be the result of low levels of heterozygosity in the parents and low levels of genetic divergence within A. cunninghamii. This result was consistent with other recent molecular studies of A. cunninghamii that indicate that the species may have low genetic diversity and possibly experiences localised inbreeding.  相似文献   

16.
An integrated SSR map of grapevine based on five mapping populations   总被引:8,自引:7,他引:1  
A grapevine (mainly Vitis vinifera L., 2n = 38) composite genetic map was constructed with CarthaGene using segregation data from five full-sib populations of 46, 95, 114, 139 and 153 individuals, to determine the relative position of a large set of molecular markers. This consensus map comprised 515 loci (502 SSRs and 13 other type PCR-based markers), amplified using 439 primer pairs (426 SSRs and 13 others) with 50.1% common markers shared by at least two crosses. Out of all loci, 257, 85, 74, 69 and 30 were mapped in 1, 2, 3, 4 and 5 individual mapping populations, respectively. Marker order was generally well conserved between maps of individual populations, with only a few significant differences in the recombination rate of marker pairs between two or more populations. The total length of the integrated map was 1,647 cM Kosambi covering 19 linkage groups, with a mean distance between neighbour loci of 3.3 cM. A framework-integrated map was also built, with marker order supported by a LOD of 2.0. It included 257 loci spanning 1,485 cM Kosambi with a mean inter-locus distance of 6.2 cM over 19 linkage groups. These integrated maps are the most comprehensive SSR-based maps available so far in grapevine and will serve either for choosing markers evenly scattered over the whole genome or for selecting markers that cover particular regions of interest. The framework map is also a useful starting point for the integration of the V. vinifera physical and genetic maps.Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

17.
D. Grattapaglia  R. Sederoff 《Genetics》1994,137(4):1121-1137
We have used a ``two-way pseudo-testcross' mapping strategy in combination with the random amplified polymorhic DNA (RAPD) assay to construct two moderate density genetic linkage maps for species of Eucalyptus. In the cross between two heterozygous individuals many single-dose RAPD markers will be heterozygous in one parent, null in the other and therefore segregate 1:1 in their F(1) progeny following a testcross configuration. Meiosis and gametic segregation in each individual can be directly and efficiently analyzed using RAPD markers. We screened 305 primers of arbitrary sequence, and selected 151 to amplify a total of 558 markers. These markers were grouped at LOD 5.0, θ = 0.25, resulting in the maternal Eucalyptus grandis map having a total of 240 markers into 14 linkage groups (1552 cM) and the paternal Eucalyptus urophylla map with 251 markers in 11 linkage groups (1101 cM) (n = 11 in Eucalyptus). Framework maps ordered with a likelihood support >/=1000:1 were assembled covering 95% of the estimated genome size in both individuals. Characterization of genome complexity of a sample of 48 mapped random amplified polymorphic DNA (RAPD) markers indicate that 53% amplify from low copy regions. These are the first reported high coverage linkage maps for any species of Eucalyptus and among the first for any hardwood tree species. We propose the combined use of RAPD markers and the pseudo-testcross configuration as a general strategy for the construction of single individual genetic linkage maps in outbred forest trees as well as in any highly heterozygous sexually reproducing living organism. A survey of the occurrence of RAPD markers in different individuals suggests that the pseudo-testcross/RAPD mapping strategy should also be efficient at the intraspecific level and increasingly so with crosses of genetically divergent individuals. The ability to quickly construct single-tree genetic linkage maps in any forest species opens the way for a shift from the paradigm of a species index map to the heterodox proposal of constructing several maps for individual trees of a population, therefore mitigating the problem of linkage equilibrium between marker and trait loci for the application of marker assisted strategies in tree breeding.  相似文献   

18.
Based on an F1 progeny of 73 individuals, two parental maps were constructed according to the double pseudo-test cross strategy. The paternal map contained 16 linkage groups for a total genetic length of 1,792 cM. The maternal map covered 1,920 cM, and consisted of 12 linkage groups. These parental maps were then integrated using 66 intercross markers. The resulting consensus map covered 2,035 cM and included 755 markers (661 AFLPs, 74 SSRs, 18 ESTPs, the 5S rDNA and the early cone formation trait) on 12 linkage groups, reflecting the haploid number of chromosomes of Picea abies. The average spacing between two adjacent markers was 2.6 cM. The presence of 39 of the SSR and/or ESTP markers from this consensus map on other published maps of different Picea and Pinus species allowed us to establish partial linkage group homologies across three P. abies maps (up to five common markers per linkage group). This first saturated linkage map of P. abies could be therefore used as a support for developing comparative genome mapping in conifers.Communicated by O. Savolainen  相似文献   

19.
A linkage map of Lablab purpureus consisting of 127 RFLP and 91 RAPD loci was constructed in an F2 population of 119 individuals. This population was derived from a cross between ’Rongai’ (an annual cultivar) and CPI 24973 (a perennial wild accession). The map comprises 17 linkage groups and covers 1610 centiMorgans (cM) with an average distance of 7 cM between markers. Severe segregation distortions were observed, with the very extreme situation where no paternal type was recovered from the mapping population. These results strongly suggest the presence of a gene conferring preferential transmission from the maternal parent ’Rongai’. It was also clear that, while the majority of RAPD markers are valuable when used together with RFLP or other stringent marker systems, they could be problematic when used solely in mapping exercises. Received: 20 April 1999 / Accepted: 23 August 1999  相似文献   

20.
Kang BY  Major JE  Rajora OP 《Génome》2011,54(2):128-143
Genetic maps provide an important genomic resource of basic and applied significance. Spruce (Picea) has a very large genome size (between 0.85 × 1010 and 2.4 × 1010 bp; 8.5-24.0 pg/1C, a mean of 17.7 pg/1C ). We have constructed a near-saturated genetic linkage map for an interspecific backcross (BC1) hybrid of black spruce (BS; Picea mariana (Mill.) B.S.P.) and red spruce (RS; Picea rubens Sarg.), using selectively amplified microsatellite polymorphic loci (SAMPL) markers. A total of 2284 SAMPL markers were resolved using 31 SAMPL-MseI selective nucleotide primer combinations. Of these, 1216 SAMPL markers showing Mendelian segregation were mapped, whereas 1068 (46.8%) SAMPL fragments showed segregation distortion at α = 0.05. Maternal, paternal, and consensus maps consistently coalesced into 12 linkage groups, corresponding to the haploid chromosome number (1n = 1x = 12) of 12 in the genus Picea. The maternal BS map consisted of 814 markers distributed over 12 linkage groups, covering 1670 cM, with a mean map distance of 2.1 cM between adjacent markers. The paternal BS × RS map consisted of 773 markers distributed over 12 linkage groups, covering 1563 cM, with a mean map distance of 2.0 cM between adjacent markers. The consensus interspecific hybrid BC1 map consisted of 1216 markers distributed over 12 linkage groups, covering 1865 cM (98% genome coverage), with a mean map distance of 1.5 cM between adjacent markers. The genetic map reported here provides an important genomic resource in Picea, Pinaceae, and conifers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号