首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 845 毫秒
1.
A real xx is called hh-bounded computable  , for some function h:N→Nh:NN, if there is a computable sequence (xs)(xs) of rational numbers which converges to xx such that, for any n∈NnN, at most h(n)h(n) non-overlapping pairs of its members are separated by a distance larger than 2-n2-n. In this paper we discuss properties of hh-bounded computable reals for various functions hh. We will show a simple sufficient condition for a class of functions hh such that the corresponding hh-bounded computable reals form an algebraic field. A hierarchy theorem for hh-bounded computable reals is also shown. Besides we compare semi-computability and weak computability with the hh-bounded computability for special functions hh.  相似文献   

2.
Let F(x,y)F(x,y) be a polynomial over a field KK and mm a nonnegative integer. We call a polynomial gg over KK an mm-near solution of F(x,y)F(x,y) if there exists a c∈KcK such that F(x,g)=cxmF(x,g)=cxm, and the number cc is called an mm-value of F(x,y)F(x,y) corresponding to gg. In particular, cc can be 0. Hence, by viewing F(x,y)=0F(x,y)=0 as a polynomial equation over K[x]K[x] with variable yy, every solution of the equation F(x,y)=0F(x,y)=0 in K[x]K[x] is also an mm-near solution. We provide an algorithm that gives all mm-near solutions of a given polynomial F(x,y)F(x,y) over KK, and this algorithm is polynomial time reducible to solving one variable equations over KK. We introduce approximate solutions to analyze the algorithm. We also give some interesting properties of approximate solutions.  相似文献   

3.
4.
This paper deals with the existence and search for properly edge-colored paths/trails between two, not necessarily distinct, vertices ss and tt in an edge-colored graph from an algorithmic perspective. First we show that several versions of the s−tst path/trail problem have polynomial solutions including the shortest path/trail case. We give polynomial algorithms for finding a longest properly edge-colored path/trail between ss and tt for a particular class of graphs and characterize edge-colored graphs without properly edge-colored closed trails. Next, we prove that deciding whether there exist kk pairwise vertex/edge disjoint properly edge-colored s−tst paths/trails in a cc-edge-colored graph GcGc is NP-complete even for k=2k=2 and c=Ω(n2)c=Ω(n2), where nn denotes the number of vertices in GcGc. Moreover, we prove that these problems remain NP-complete for cc-edge-colored graphs containing no properly edge-colored cycles and c=Ω(n)c=Ω(n). We obtain some approximation results for those maximization problems together with polynomial results for some particular classes of edge-colored graphs.  相似文献   

5.
We consider a two-edge connected, undirected graph G=(V,E)G=(V,E), with nn nodes and mm non-negatively real weighted edges, and a single source shortest paths tree (SPT) TT of GG rooted at an arbitrary node rr. If an edge in TT is temporarily removed, it makes sense to reconnect the nodes disconnected from the root by adding a single non-tree edge, called a swap edge  , instead of rebuilding a new optimal SPT from scratch. In the past, several optimality criteria have been considered to select a best possible swap edge. In this paper we focus on the most prominent one, that is the minimization of the average distance between the root and the disconnected nodes. To this respect, we present an O(mlog2n)O(mlog2n) time and O(m)O(m) space algorithm to find a best swap edge for every edge of TT, thus improving for m=o(n2/log2n)m=o(n2/log2n) the previously known O(n2)O(n2) time and space complexity algorithm.  相似文献   

6.
7.
8.
This paper concerns construction of additive stretched spanners with few edges for nn-vertex graphs having a tree-decomposition into bags of diameter at most δδ, i.e., the tree-length δδ graphs. For such graphs we construct additive 2δ2δ-spanners with O(δn+nlogn)O(δn+nlogn) edges, and additive 4δ4δ-spanners with O(δn)O(δn) edges. This provides new upper bounds for chordal graphs for which δ=1δ=1. We also show a lower bound, and prove that there are graphs of tree-length δδ for which every multiplicative δδ-spanner (and thus every additive (δ−1)(δ1)-spanner) requires Ω(n1+1/Θ(δ))Ω(n1+1/Θ(δ)) edges.  相似文献   

9.
10.
11.
The claw finding problem has been studied in terms of query complexity as one of the problems closely connected to cryptography. Given two functions, ff and gg, with domain sizes NN and MM(N≤M)(NM), respectively, and the same range, the goal of the problem is to find xx and yy such that f(x)=g(y)f(x)=g(y). This problem has been considered in both quantum and classical settings in terms of query complexity. This paper describes an optimal algorithm that uses quantum walk to solve this problem. Our algorithm can be slightly modified to solve the more general problem of finding a tuple consisting of elements in the two function domains that has a prespecified property. It can also be generalized to find a claw of kk functions for any constant integer k>1k>1, where the domain sizes of the functions may be different.  相似文献   

12.
The most natural and perhaps most frequently used method for testing membership of an individual tuple in a conjunctive query is based on searching trees of partial solutions, or search-trees. We investigate the question of evaluating conjunctive queries with a time-bound guarantee that is measured as a function of the size of the optimal search-tree. We provide an algorithm that, given a database DD, a conjunctive query QQ, and a tuple aa, tests whether Q(a)Q(a) holds in DD in time bounded by a polynomial in (sn)logk(sn)loglogn(sn)logk(sn)loglogn and nrnr, where nn is the size of the domain of the database, kk is the number of bound variables of the conjunctive query, ss is the size of the optimal search-tree, and rr is the maximum arity of the relations. In many cases of interest, this bound is significantly smaller than the nO(k)nO(k) bound provided by the naive search-tree method. Moreover, our algorithm has the advantage of guaranteeing the bound for any given conjunctive query. In particular, it guarantees the bound for queries that admit an equivalent form that is much easier to evaluate, even when finding such a form is an NP-hard task. Concrete examples include the conjunctive queries that can be non-trivially folded into a conjunctive query of bounded size or bounded treewidth. All our results translate to the context of constraint-satisfaction problems via the well-publicized correspondence between both frameworks.  相似文献   

13.
14.
We study the state complexity of certain simple languages. If AA is an alphabet of kk letters, then a kk-language   is a nonempty set of words of length kk, that is, a uniform language of length kk. We show that the minimal state complexity of a kk-language is k+2k+2, and the maximal, (kk−1−1)/(k−1)+2k+1(kk11)/(k1)+2k+1. We prove constructively that, for every ii between the minimal and maximal bounds, there is a language of state complexity ii. We introduce a class of automata accepting sets of words that are permutations of AA; these languages define a complete hierarchy of complexities between k2−k+3k2k+3 and 2k+12k+1. The languages of another class of automata, based on kk-ary trees, define a complete hierarchy of complexities between 2k+12k+1 and (kk−1−1)/(k−1)+2k+1(kk11)/(k1)+2k+1. This provides new examples of uniform languages of maximal complexity.  相似文献   

15.
We show how to support efficient back traversal in a unidirectional list, using small memory and with essentially no slowdown in forward steps. Using O(lgn)O(lgn) memory for a list of size nn, the ii’th back-step from the farthest point reached so far takes O(lgi)O(lgi) time in the worst case, while the overhead per forward step is at most ?? for arbitrary small constant ?>0?>0. An arbitrary sequence of forward and back steps is allowed. A full trade-off between memory usage and time per back-step is presented: kk vs. kn1/kkn1/k and vice versa. Our algorithms are based on a novel pebbling technique which moves pebbles on a virtual binary, or n1/kn1/k-ary, tree that can only be traversed in a pre-order fashion.  相似文献   

16.
We prove an explicit bound on the radius of a ball centered at the origin which is guaranteed to contain all bounded connected components of a semi-algebraic set S⊂RkSRk defined by a weak sign condition involving ss polynomials in Z[X1,…,Xk]Z[X1,,Xk] having degrees at most dd, and whose coefficients have bitsizes at most ττ. Our bound is an explicit function of s,d,ks,d,k and ττ, and does not contain any undetermined constants. We also prove a similar bound on the radius of a ball guaranteed to intersect every connected component of SS (including the unbounded components). While asymptotic bounds of the form 2τdO(k)2τdO(k) on these quantities were known before, some applications require bounds which are explicit and which hold for all values of s,d,ks,d,k and ττ. The bounds proved in this paper are of this nature.  相似文献   

17.
We show how to compute Hong’s bound for the absolute positiveness of a polynomial in dd variables with maximum degree δδ in O(nlogdn)O(nlogdn) time, where nn is the number of non-zero coefficients. For the univariate case, we give a linear time algorithm. As a consequence, the time bounds for the continued fraction algorithm for real root isolation improve by a factor of δδ.  相似文献   

18.
Matroid theory gives us powerful techniques for understanding combinatorial optimization problems and for designing polynomial-time algorithms. However, several natural matroid problems, such as 3-matroid intersection, are NP-hard. Here we investigate these problems from the parameterized complexity point of view: instead of the trivial nO(k)nO(k) time brute force algorithm for finding a kk-element solution, we try to give algorithms with uniformly polynomial (i.e., f(k)⋅nO(1)f(k)nO(1)) running time. The main result is that if the ground set of a represented linear matroid is partitioned into blocks of size ??, then we can determine in randomized time f(k,?)⋅nO(1)f(k,?)nO(1) whether there is an independent set that is the union of kk blocks. As a consequence, algorithms with similar running time are obtained for other problems such as finding a kk-element set in the intersection of ?? matroids, or finding kk terminals in a network such that each of them can be connected simultaneously to the source by ?? disjoint paths.  相似文献   

19.
We prove that a polynomial f∈R[x,y]fR[x,y] with tt non-zero terms, restricted to a real line y=ax+by=ax+b, either has at most 6t−46t4 zeros or vanishes over the whole line. As a consequence, we derive an alternative algorithm for deciding whether a linear polynomial y−ax−b∈K[x,y]yaxbK[x,y] divides a lacunary polynomial f∈K[x,y]fK[x,y], where KK is a real number field. The number of bit operations performed by the algorithm is polynomial in the number of non-zero terms of ff, in the logarithm of the degree of ff, in the degree of the extension K/QK/Q and in the logarithmic height of aa, bb and ff.  相似文献   

20.
The most effective way to maximize the lifetime of a wireless sensor network (WSN) is to allocate initial energy to sensors such that they exhaust their energy at the same time. The lifetime of a WSN as well as an optimal initial energy allocation are determined by a network design. The main contribution of the paper is to show that the lifetime of a WSN can be maximized by an optimal network design. We represent the network lifetime as a function of the number mm of annuli and show that mm has significant impact on network lifetime. We prove that if the energy consumed by data transmission is proportional to dα+cdα+c, where dd is the distance of data transmission and αα and cc are some constants, then for a circular area of interest with radius RR, the optimal number of annuli that maximizes the network lifetime is m=R((α−1)/c)1/αm=R((α1)/c)1/α for an arbitrary sensor density function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号