首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
采用控制变量、正交试验法,通过测定膜层厚度、截面显微硬度、表面粗糙度、表面形貌、截面形貌及摩擦磨损试验、膜层表面XRD的分析对制备ZL109铝合金微弧氧化陶瓷层的电解液组成及电参数进行了优化研究。得到了制备ZL109铝合金微弧氧化耐磨陶瓷层的一组优化后的工艺方案,电解液配方为:8 g/L硅酸钠、2.5 g/L氢氧化钾、5 g/L钨酸钠、2 g/L乙二胺四乙酸二钠;电参数为:正向电压400 V、负向电压120 V、占空比20%、频率500 Hz。所生成的膜层厚度为76μm,表面粗糙度为2.2872μm;摩擦磨损试验中,磨损状态稳定,磨损量在30 h后稳定在1 mg左右。  相似文献   

2.
电解液浓度对纯钛微弧氧化陶瓷膜结构的影响   总被引:1,自引:0,他引:1  
为了得到具有生物活性的陶瓷膜,通过研究微弧氧化的工艺条件,得到了适宜于制备多孔生物活性膜的电解液配方,其中Na2HPO4质量浓度为20g/L、KOH质量浓度为2g/L。结果表明,随电解液浓度的增加,起弧电压降低,陶瓷层厚度增加,最大达到13.6μm,表面粗糙度增大,最大达到3.2μm。采用该电解液在适当的微弧氧化工艺条件下,在纯钛表面制备的陶瓷膜具有分布均匀的多孔结构。  相似文献   

3.
采用微弧氧化工艺在航空用2024铝合金基材表面制备陶瓷膜层。探究电解液(Na_2SiO_3+KOH)中的Na_2SiO_3浓度对微弧氧化膜层表面形貌、膜层厚度及其耐腐蚀性的影响。研究结果表明:随着Na_2SiO_3浓度增大,微弧氧化陶瓷膜层的厚度先快速增加,在ρ(Na2Si O3)=9 g/L后转为微小波动型的缓慢增加。随着Na_2SiO_3浓度的增加,表面微孔的数量与孔径也呈缓慢增大的趋势。当ρ(Na_2SiO_3)=11 g/L时,表面出现裂纹。当ρ(Na_2SiO_3)=5 g/L~7 g/L时,陶瓷膜层具有良好的耐腐蚀性能。  相似文献   

4.
目的探究微弧氧化电解液中纳米氮化硼(BN)浓度对铝微弧氧化陶瓷层组织和性能的影响。方法在硅酸盐体系电解液中加入1~5 g/L不同浓度的纳米BN,制备纳米BN复合微弧氧化层。利用扫描电镜、能谱仪和X射线衍射仪,分别表征纳米BN复合微弧氧化层的微观组织、元素分布及物相组成。采用涂层测厚仪、粗糙度仪、显微硬度计、摩擦磨损试验机等手段,研究纳米BN对1060纯铝微弧氧化膜层的厚度、粗糙度、显微硬度、摩擦学性能的影响。结果在微弧氧化BN复合膜的表层有弥散分布的BN颗粒,当电解液中添加3 g/L的纳米BN时,制备的微弧氧化层的性能最好,其表面的孔洞数量最少且孔径最小,膜层表面更加致密,其厚度可达到(93.8±1.9)μm,硬度达到(942±51)HV,粗糙度Ra降低为(3.66±0.14)μm,摩擦系数降低为0.55,磨损体积比未添加BN的膜层减少了1.18×10-2 mm3,并且磨痕平整光滑,裂纹较少。结论硅酸盐电解液中加入纳米BN能够改善1060纯铝微弧氧化膜层的综合性能。  相似文献   

5.
目的提高铝合金钻杆材料微弧氧化膜层的性能。方法在电解液中加入0~4 g/L的SiC微粉,对7E04铝合金钻杆材料表面生成的微弧氧化膜层进行改性,研究了微弧氧化膜层的氧化电压-时间曲线、厚度、显微硬度、表面形貌、膜层元素含量、相组成和耐蚀性。结果随着SiC微粉质量浓度的增加(0、1、2、3、4 g/L),氧化电压不断增加,在4 g/L时几乎达到550 V。微弧氧化膜层的厚度和显微硬度增加,各浓度下的膜层厚度分别为42.3、43.6、45.0、45.3、50.0μm,膜层显微硬度分别为341.8、375.2、394.4、405.1、436.8MPa。同时,放电孔的孔径和烧结盘的尺寸也逐渐增加。在微弧氧化过程中,SiC被氧化成SiO_2,基体中的Al被氧化成α-Al_2O_3和γ-Al_2O_3,膜层中的相组成主要有α-Al_2O_3、γ-Al_2O_3、SiO_2和莫来石。同时,随着SiC微粉浓度的增加,膜层中的C、Si元素含量增加,Al元素和O元素的含量降低。膜层的腐蚀速率分别为1.11×10~(-1)、3.598×10~(-2)、5.223×10~(-2)、6.762×10~(-2)、1.323×10~(-1) mm/a,呈现出先减小后增加的趋势,耐蚀性先增加后降低。结论 SiC微粉的添加增加了膜层的厚度,改变了膜层的表面形貌,同时提高了微弧氧化膜层的显微硬度、耐蚀性等性能。  相似文献   

6.
利用微弧氧化技术,通过在硅酸盐电解液中加入石墨烯添加剂,在LY12铝合金表面制备一层含碳陶瓷层,采用扫描电镜、X射线衍射仪和电化学工作站等对陶瓷层的微观结构、成分组成以及耐磨耐蚀性能进行分析检测。结果表明:制备的含碳陶瓷层表面微孔尺寸和粗糙度值均明显降低,主要由Al_2O_3、SiO_2以及Al_2SiO_5物相组成。相比于不含碳的陶瓷层,含碳陶瓷层最大厚度为20.5μm,而且更加均匀致密。在相同的摩擦条件下,含碳陶瓷层的摩擦系数仅为0.09,比不含碳陶瓷层摩擦系数值降低了近3倍,表现出良好的减摩性能。由于含碳陶瓷层的厚度和致密性提高,使其腐蚀电流密度显著降低,耐蚀性也得到了明显的改善。  相似文献   

7.
《铸造技术》2015,(11):2651-2653
以NaAlO2溶液为离子改性溶液,用正交试验法研究了离子溶液体系中NaAlO2浓度、NaOH浓度和三乙醇胺浓度对改性膜层组织与性能的影响。结果表明,NaAlO2体系最佳电解液的配方为A2B2C2,即NaAlO2浓度为9 g/L、NaOH浓度为1 g/L、三乙醇胺浓度为6 m L/L,得到了7075合金陶瓷膜层最大厚度为32.2μm,显微硬度达到1 091 HV。  相似文献   

8.
利用微弧氧化技术,分别在不同电解液体系(Na_2SiO_3、NaAlO_2、Na_3PO_4)中制备AZ91D镁合金表面微弧氧化陶瓷层。采用SEM分析了微弧氧化陶瓷层表面的微观形貌、孔隙率。利用CHI650D电化学工作站,在3.5%NaCl溶液中测试了微弧氧化陶瓷层的耐腐蚀性能。结果表明,NaAlO_2体系微弧氧化膜表面微孔分布均匀,孔隙尺寸较小,约1~2μm;陶瓷膜厚度随氧化时间增加而线性增长,孔隙率则先增加后减小。NaAlO_2陶瓷膜的孔隙率仅为10.9%,膜层厚度可达30μm。NaAlO_2体系膜层腐蚀电位(-1.32 V)相对较高,自腐蚀电流密度(2.14×10~(-8)A·cm~(-2))较基体减小3个数量级,耐蚀性最好。  相似文献   

9.
薛燕  王振国 《表面技术》2017,46(7):91-96
目的提高镁合金的耐蚀性和耐磨性。方法以AZ91D镁合金为基体,采用SiC颗粒质量浓度为3 g/L的Ni-P化学镀溶液,在其表面沉积不同时间,制备Ni-P-SiC复合镀层。通过扫描电子显微镜(SEM)、显微硬度测试、粗糙度仪、电化学腐蚀和磨损等试验来分析和评价Ni-P-SiC复合镀层的厚度、表面粗糙度、显微硬度、耐腐蚀性能和耐磨性能。结果 Ni-P-SiC复合镀层的厚度和表面粗糙度随沉积时间增加而增加,沉积时间为150 min时,镀层厚度可达53μm,表面粗糙度为2.5μm。沉积时间为120 min时,镀层的显微硬度最高,为641HV,此时复合镀层的耐蚀性和耐磨性最好,自腐蚀电位高达-0.73 V,腐蚀电流密度为0.78μA/cm~2,磨损体积最小,为1.04×10~(-3)mm~3。与AZ91D镁合金基体相比,沉积复合镀层后的样品更耐蚀,说明复合镀层有效改善了镁合金基体的耐蚀性。结论沉积时间对Ni-P-SiC复合镀层的性能有一定影响,在沉积时间为120 min时获得的复合镀层具有较好的耐蚀性和耐磨性。  相似文献   

10.
崔丽华  郝建民 《热加工工艺》2012,41(18):205-207,212
研究了在Na2SiO3体系中电解液组成和浓度对压铸铝合金微弧氧化陶瓷层厚度、硬度及外观均匀性的影响.结果表明:随着Na2SiO3和NaOH浓度的增加,膜层厚度和硬度先增加后减小,适宜的添加剂可以增加膜层厚度,提高膜层的均匀性.本实验条件下适宜压铸铝合金微弧氧化的电解液配方为Na2SiO310g/L、NaOH2g/L、添加剂6mL/L.  相似文献   

11.
在稳定的Na2SiO3电解液体系中对ZAlSi12Cu2Mgl进行微弧氧化,研究了电解液中稀土Ce的质量浓度对电解液电导率、微弧氧化过程中正/负向电流及微弧氧化层特性的影响.研究结果表明,随着Ce的质量浓度从0到0.125 g/L逐渐增加,电解液的电导率从15.15 MS/m逐渐上升到16.54 MS/m,微弧氧化过程中的电流发生明显改变;随着Ce的质量浓度的提高,微弧氧化层厚度和显微硬度先增大随后逐渐减小,在Ce质量浓度为0.025 g/L时达到最大,其氧化层厚度约为258μm;显微硬度(HV)约为620.  相似文献   

12.
《铸造技术》2015,(7):1770-1772
采用盐雾试验及电化学分析研究了不同电解液及厚度下,铝合金微弧氧化陶瓷层的耐蚀性。结果表明,铝合金耐蚀性的提高并不与陶瓷层的厚度增加成正比,10μm厚度要优于5μm及20μm的;不同电解液所制备的陶瓷层耐蚀性也不同,SiO32-溶液制备试样的耐蚀性要优于AlO2-溶液制备试样的耐蚀性。  相似文献   

13.
孙萍  杨建 《金属成形工艺》2012,(1):21-25,77
利用扫描电镜(SEM)、表面粗糙度测量仪等分析手段,研究了铝合金A356微弧氧化电解液配方对膜层性能的影响规律,优化了电解液配方:主电解质NaOH的质量浓度为4g/L及Na2SiO3的质量浓度为14g/L,添加剂KF的质量浓度为6g/L。KF对膜层性能有很大的改善,随着KF的加入,耐蚀时间从28.7min增大至36min,粗糙度从0.9μm减少到0.55μm。  相似文献   

14.
郑晓辉  单冬冬  宋皓  叶雄  吴迪  谭俊 《表面技术》2017,46(10):128-134
目的在氧化铝陶瓷表面化学镀金属镍镀层,研究施镀时间对Al_2O_3陶瓷表面化学镀镍层的表面形貌、组织结构、显微硬度、表面粗糙度和镀镍层结合力的影响。方法所用镀液组成及工艺参数为:NiSO_4·6H_2O_25g/L,NaH_2PO_2·H_2O 22g/L,Na_3C_6H_5O_7·2H_2O 64g/L,(NH_4)SO_4 62g/L,pH=5.0~6.0,水浴加热至90℃,施镀时间1~4h。采用NovaNanoSEM50型场发射扫描电子显微镜观察镀层的表面微观形貌,采用TH765型自动显微硬度仪测试镀层硬度,采用OLS4000型三维形貌测量仪测量镀层表面粗糙度,采用压入法和热震试验评价镀层的结合性能。结果施镀时间为1~4h时,1h镀层表面金属光泽性好,呈银白色,4h镀层表面更为细腻,但表面光泽性较差。随着施镀时间的增长,Al_2O_3陶瓷表面化学镀镍层表面越光滑,显微硬度越大。不同施镀时间下的化学镀层均没有出现起泡、片状剥落或者与氧化铝基体分离等现象。结论施镀时间为1~4h时,在温度和pH不变的情况下,随着施镀时间增加,化学镀镍层厚度变化不大,但是镀层颗粒更细小,显微硬度明显提高,表面粗糙度降低,镀层结合力良好。  相似文献   

15.
采用电解液成分逐渐加入法,在6种电解液中对ZAlSi12Cu2Mg1试样进行微弧氧化处理,研究电解液组成对微弧氧化陶瓷膜形成的影响,寻找合适的电解液组成.结果表明:电解液组成对陶瓷膜层的厚度、粗糙度、硬度、耐磨性、膜层微观形貌及相组成的影响很大,通过调节电解液成分,可获得性能优良的陶瓷膜.适宜的电解液组成为:8g/L NaSiO3,1 g/L NaOH,2 g/t,Na2WO4,0.5 g/L Na2EDTA及10 mL/L丙三醇.在此种电解液组成F,获得的陶瓷膜厚156 μm,面粗糙度为259nm显微硬度达HV 891.在干摩擦条件下,经30min磨损后,其磨损仅为基体的13.29%.观察膜层微观形貌,膜层均匀致密.XRD分析表明:氧化层中含有Al、莫来石、SiO2、а-Al2O3、y-Al2O3和WO3相.  相似文献   

16.
为了提高钛合金的骨整合性和抗菌活性,在NaF电解液中对Ti6Al4V合金进行等离子体电解氧化(PEO)处理,制备含抗菌F元素的微/纳米结构陶瓷涂层。采用扫描/透射电子显微镜、能谱仪、原子力显微镜、X射线衍射仪和动电位极化等手段,研究NaF浓度(0.15~0.50 mol/L)对PEO工艺、涂层的显微组织、相组成、耐蚀性和厚度的影响。结果表明,在NaF电解液中Ti6Al4V合金的PEO电压低(低于200 V),且随着NaF浓度的增加,PEO电压进一步降低。在NaF电解液中形成具有孔径分别为10~15μm和200~800 nm的微/纳结构涂层,该涂层的形貌与在其他电解液中形成的典型饼状结构不同。在Na F电解液中形成的涂层局部表面粗糙度很小,厚度较薄(4μm)。NaF浓度对从亚稳态锐钛矿相向稳定金红石相转变的影响较小,但对涂层耐蚀性影响较大。总的来说,随着NaF浓度的增加,涂层的表面粗糙度、锐钛矿和金红石含量、耐蚀性和厚度先增大后减小,NaF浓度为0.25 mol/L时达到最大值。  相似文献   

17.
目的探究微弧氧化电解液中纳米α-Al2O3的浓度对铝合金微弧氧化膜层组织和性能的影响。方法在硅酸盐体系电解液中加入1~5 g/L纳米α-Al2O3,微弧氧化获得不同的陶瓷膜层,对膜层的微观结构、厚度、硬度和耐腐蚀性能进行分析。结果膜层的主要组成相为α-Al2O3、γ-Al2O3和SiO2。当纳米α-Al2O3添加量为3 g/L时,膜层表面微裂纹少,孔隙率小,厚度达70μm,硬度为513HV,耐腐蚀性能好。结论硅酸盐电解液中加入纳米α-Al2O3,能够改善铝合金微弧氧化膜层的综合性能。  相似文献   

18.
研究了复合氧化工艺在Ti-6Al-4V(TC4)钛合金表面制备多孔TiO_2氧化膜层的工艺和性能。在乙酸钙和磷酸二氢钾电解体系中,运用阳极氧化法、微弧氧化和复合氧化方法在TC4钛合金表面制备了多孔生物陶瓷TiO_2氧化膜层,并讨论了电解液浓度(Ca/P)、成膜电压和成膜时间等参数对膜层膜厚、硬度及粗糙度等性能的影响。采用X射线衍射仪、显微硬度计、便携式粗糙度仪、扫描电镜和电化学工作站等仪器分析了表面TiO_2膜层的物相组成、显微硬度、粗糙度、耐腐蚀性和显微形貌及其结构。研究结果表明:采用恒压阳极氧化技术,在TC4表面可形成一层光滑致密氧化膜层,该膜层粗糙度比预处理过的钛合金表面大0.05μm,厚2~10μm,显微硬度为3200MPa(HV)左右,比钛合金显微硬度3100MPa(HV)略大。再在阳极氧化膜层的基础上进行复合氧化,可以在TC4表面形成具有良好耐腐蚀性的多孔TiO_2膜层。膜层的硬度可以达到7000MPa(HV),厚度达到64μm。  相似文献   

19.
在稳定的Na2SiO3电解液体系中对ZAlSil2Cu2Mg1进行微弧氧化,研究了电解液中稀土Ce的质量浓度对电解液电导率、微弧氧化过程中正/负向电流及微弧氧化层特性的影响。研究结果表明,随着Ce的质量浓度从0到0.125g/L逐渐增加,电解液的电导率从15.15MS/m逐渐上升到16.54MS/m,微弧氧化过程中的电流发生明显改变;随着Ce的质量浓度的提高,微弧氧化层厚度和显微硬度先增大随后逐渐减小,在Ce质量浓度为0.025g/L时达到最大,其氧化层厚度约为258μm;显微硬度(HV)约为620。  相似文献   

20.
以飞机架构用7075合金为研究对象,通过正交试验法优化了7075合金在NaAlO2、Na2SiO3、Na2B4O7和Na3PO4四个电解液体系下的微弧氧化工艺参数最佳方案,并对微弧氧化膜层的厚度、硬度、表面形貌和截面形貌进行了表征。结果表明,7075合金微弧氧化的四种电解液的最佳配方为:NaAlO2浓度为9 g/L、Na2SiO3浓度为8 g/L、Na2B4O7浓度为15 g/L、Na3PO4浓度为12 g/L,NaOH和三乙醇胺浓度分别为1 g/L和3 g/L;四种优化电解体系的微弧氧化陶瓷膜层的显微硬度的最大值出现在NaAlO2体系(1091 HV0.1),而陶瓷膜层的最小值出现在Na3PO4体系(553 HV0.1)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号