首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
以过硫酸铵为氧化剂, 氨为络合剂, 采用常温常压氧化氨浸工艺浸出铜镉渣中有价金属锌、镉和铜。对浸出过程工艺条件进行研究, 结果表明:在氨水浓度3.4 mol/L、铵离子浓度5.0 mol/L、(NH4)2S2O8浓度30 g/L、液固比5∶1、浸出时间60 min的条件下, 铜、镉的浸出率达到99%,同时锌的浸出率达到95%。  相似文献   

2.
通过分析高铟氧粉酸浸渣的成分和物相特征, 发现其主要物相为Cu2FeS2、ZnSO4、ZnS和PbSO4, 由于成分复杂, 单一方法无法有效回收铜、锌、铅, 因此设计了硫酸-氯盐二段浸出法, 分别提取酸浸渣中铜、锌和铅。一段浸出采用硫酸浸出, 在始酸浓度60 g/L, 液固比5∶1, 氧化剂高锰酸钾用量4%, 浸出温度60 ℃条件下, 浸出2 h, 铜和锌浸出率分别达到84.29%和92.02%; 二段浸出采用氯盐浸出, 在NaCl浓度300 g/L, 液固比10∶1, pH=1.5~2.0, 浸出温度90 ℃条件下, 浸出60 min, 铅浸出率达到91.14%。该法对铜、锌和铅都有很好的浸出效果。  相似文献   

3.
转炉烟灰高效浸出铟的工艺研究   总被引:1,自引:0,他引:1  
以某公司复杂含铟转炉烟灰为原料, 采用氧化酸浸工艺浸出其中铟, 考察了硫酸酸度、液固比、浸出温度、反应时间、双氧水添加量等因素对铟浸出效果的影响。结果表明, 在初始硫酸浓度3.0 mol/L、液固比6∶1、浸出温度90 ℃、浸出时间4 h、氧化剂H2O2加入量0.8 mL/g条件下进行氧化酸浸, 铟浸出率达到94%以上, 实现了铟的高效浸出。  相似文献   

4.
用人工合成的硫化铟模拟实际硫化铟,研究了硫化铟在硫酸体系中常规浸出和以高锰酸钾、双氧水为氧化剂的氧化浸出的浸出效果和工艺条件。结果表明:在搅拌速度为800 r/min、物料粒度为75~96 μm、液固比为300∶1、温度为80 ℃、硫酸初始浓度为2.0 mol/L的条件下,常规浸出60 min,铟的浸出率为84.9%;而在相同条件下加入氧化剂KMnO4或H2O2进行氧化浸出,只需20 min就可使铟的浸出率达到94.9%或92.8%。在温度<70 ℃时,氧化剂的效应起主要作用,高锰酸钾的氧化效果比双氧水更明显;在温度>70 ℃时,温度效应占主导地位,两种氧化剂的影响差别不大。  相似文献   

5.
针对国外某渣选硫化铜精矿,采用加温铁氧化酸浸工艺回收其中铜,考察了氧化剂用量、浸出温度、浸出时间、初始硫酸浓度、液固比等因素对渣选硫化铜精矿中Cu浸出率的影响。结果表明,适宜的浸出条件为:氧化剂赤铁矿用量0.2 g/g、浸出温度85℃、浸出时间6 h、液固比5∶1、初始硫酸浓度200 g/L,此时铜浸出率可达97.96%。不同类型氧化剂验证试验结果表明,赤铁矿和磁铁矿在酸浸体系中均有较好的氧化性,可实现渣选硫化铜精矿中铜在中温条件下浸出,且三价铁化合物纯度越高,铜氧化浸出效果越好。  相似文献   

6.
铜阳极泥综合渣中碲的回收   总被引:2,自引:0,他引:2  
姜国敏 《金属矿山》2008,38(6):142-144
某铜冶炼厂铜电解阳极泥处理过程中产生的综合渣中含碲量较高,为此进行了从该渣中浸出碲的试验研究。试验结果表明:采用常规酸浸工艺不能获得令人满意的碲浸出率;而采用以硫酸为浸出剂、KMnO4为氧化剂的氧化酸浸工艺,在浸出温度为80 ℃、液固质量比为5:1、KMnO4用量为0.008 g/g(对原料)、硫酸浓度为3.6 mol/L、浸出时间为5 h的条件下,碲的浸出率达到90.09%,同时可使渣中97.81%的铜被浸出,浸出液可进一步提取碲和铜。  相似文献   

7.
碱熔预处理回收废稀土荧光粉工艺研究   总被引:2,自引:2,他引:0  
田欢  魏昊  赖莉  赵卓 《矿冶工程》2018,38(3):96-98
针对当前废稀土荧光粉综合回收利用率低、不当处理造成环境污染等问题, 采用碱焙烧-洗涤-酸浸处理废稀土荧光粉, 考察了焙烧添加剂用量、液固比、酸浓度、浸出温度及浸出时间对稀土浸出效果的影响。结果表明, 采用碱焙烧-洗涤-酸浸处理废弃荧光粉, 4种稀土元素回收率分别为:Y2O3 99.47%, Eu2O3 97.79%, CeO2 87.55%, Tb4O7 92.67%。通过对碱熔产物物相和形貌分析表明, 绿粉致密结构被有效破坏, 以铝酸盐形式存在。NaOH添加比例对4种稀土浸出率影响较大, 盐酸浓度及浸出温度对Tb4O7、CeO2浸出效果影响较大。  相似文献   

8.
介绍了采用过硫酸铵((NH4)2S2O8)作氧化剂、氯化钠(NaCl)作络合剂的无氰浸银新方法。对浸银过程中(NH4)2S2O8及NaCl的浓度、浸出温度和时间、浸出环境的pH值、浸出过程中的搅拌强度等进行了条件试验。试验研究结果表明,在(NH4)2S2O8浓度0.225%,NaCl浓度25%,浸出温度45 ℃,浸出时间6 h,搅拌速度675 r/min条件下,对银粉中银的浸出率可达95%以上。  相似文献   

9.
碱法浸出某含钒铬泥中的钒   总被引:2,自引:0,他引:2  
某含钒铬泥为含Cr(Ⅳ)废水经还原、沉淀处理得到的固体, 干基中含Cr 30.20%, V2O5 4.80%, 具有一定的回收利用价值。对该铬泥进行了酸浸和碱浸的探索性试验, 确定该铬泥宜于采用碱浸工艺。通过碱浸单因素实验, 确定最佳浸出工艺条件为: NaOH用量30%, 液固比2∶1, 浸出温度95 ℃, 浸出时间60 min, 此时V2O5浸出率达到68.50%。在此基础上, 比较了H2O2直接氧化-碱浸出和KClO3弱酸性氧化-碱浸出工艺, 发现前者不适于该铬泥中V2O5的浸出。在弱酸性条件下用KClO3氧化后, 用NaOH浸出,V2O5浸出率达到79.30%。  相似文献   

10.
采用氧化酸浸—酒石酸络合法对铅渣煤基直接还原—磁选尾矿中的锑、铜进行了浸出回收试验。结果表明:1在硫酸用量为169.5 g/L、双氧水为12.50 mg/L、液固比为6∶1、温度为90℃下氧化酸浸60 min,锑、铜的浸出率分别为64.37%、85.41%,浸出率均较低。2酒石酸可通过络合反应抑制Sb3+、Cu2+的水解来提高锑、铜的浸出率。酒石酸用量为25 g/L情况下络合反应10 min,锑、铜的浸出率分别可达78.79%、90.72%,较不加酒石酸分别提高了14.42、5.31个百分点。3滤液p H值可影响Sb3+、Cu2+的稳定性,进而影响锑、铜的浸出率。滤液的p H值从7.0降至1.5,锑、铜的浸出率从78.79%、90.72%提高到86.07%、91.58%。因此,在原料氧化酸浸提取锑、铜过程,加酒石酸络合剂,并控制滤液的p H值,可有效抑制Sb3+、Cu2+的水解,提高锑、铜的浸出率。  相似文献   

11.
采用硫酸浸出-萃取-反萃工艺流程回收电镀污泥中的铜。运用MATLAB拟合了1 mol/L硫酸体系中铜的浸出动力学模型,表明该浸出过程为扩散和表面反应共同控制。在硫酸浓度1 mol/L、液固比15∶1条件下浸出10 min,铜浸出率达到90%。采用萃取-反萃取的方式回收浸出液中的Cu2+,以Mextral® 984H为萃取剂、Mextral® DT100为稀释剂,在溶液pH=2、萃取时间30 min、O/L相比1∶1、萃取剂浓度10%条件下萃取,铜萃取率可达99%;O/L相比1∶1、反萃取时间30 min,用25%的硫酸溶液进行反萃取,铜反萃取率可达95%。此工艺流程铜总回收率可达85%,实现了铜的高效回收。  相似文献   

12.
王龙  王旭锋  王浩  贾玉镯 《金属矿山》2018,47(2):195-199
废弃线路板的不合理处置不仅会造成严重的环境污染,危害人类的健康,还会导致资源的严重浪费。为此,以废弃线路板为研究对象,采用氨水-碳酸铵浸出体系进行了浸出回收铜试验。结果表明:在总氨浓度为5 mol/L、n[NH_3·H_2O]∶n[(NH_4)_2CO_3]为2、H_2O_2添加量为20 g/L、液固比为6 m L/g、浸出时间为2 h、浸出温度为55℃时,铜浸出率为86.59%。浸出过程采用功率为500 W的微波加热处理,铜浸出率提高至92.54%,较未采用微波处理时提高了5.95个百分点,微波加热可在一定程度上促进浸出反应进行,提高铜浸出率。浸出过程中铜由固相转移到液相,试样表面和内部产生大量微观孔隙和裂隙。  相似文献   

13.
针对Fe和Cu含量分别为2.158 g/L和0.730 g/L的含铜硫酸渣浸出液,采用氧化-中和水解除铁-硫化沉淀法回收其中的铜。对比了碳酸钠与石灰乳两种水解沉淀剂的除铁效果以及硫化钠与硫代硫酸钠两种沉铜剂的效果。最佳除铁条件为: 以碳酸钠为除铁水解沉淀剂、H2O2和铁离子摩尔比1.5、水解pH值4.0、水解温度85 ℃、水解时间3 h,最佳沉铜条件为: 硫化钠作为沉铜剂(用量为除铁后液中铜离子的等摩尔数)、沉淀pH值4.0、沉淀温度85 ℃、沉淀时间2 h。最佳工艺条件下,浸出液综合除铁率为92.98%、铜综合回收率为90.34%,沉淀得到铜品位为61.65%的硫化铜渣,可作为冶炼产品直接出售。  相似文献   

14.
刘益  张宝  楚广  唐晓威 《矿冶工程》2016,36(5):100-102
为除去炼铅氧气底吹炉烟灰浸出液中的砷和铜, 采用水浸出炼铅氧气底吹炉烟灰、氧化-共沉淀法对浸出液进行除砷、铜, 考察了pH值、H2O2用量、聚合硫酸铁用量、反应时间对金属脱除率的影响。试验结果表明, 在100 mL二次浸出液中加入30%的H2O2溶液3 mL, 氧化5 min; 再加入10%聚合硫酸铁溶液2.5 mL, 反应5 min; 加1 mol/L NaOH调整溶液pH=6.0, 反应60 min, 除杂效果最好, 砷、铜脱除率分别达99.99%、99.17%。  相似文献   

15.
用叔胺TOA对含钒钢渣直接酸浸液进行溶剂萃取,考查了主要因素对萃钒除铁的影响,并分析了TOA的构效关系及其萃钒除铁的溶液化学行为。结果表明:在TOA体积浓度15%、初始水相pH 1.8~1.9、相比A/O为3、萃取时间3 min的最佳条件下,经4级逆流萃取,较好地实现了萃钒除铁,钒萃取率达98%,而铁则很少被共萃。TOA的N原子具有较强给电子性的弧对电子,经硫酸酸化,转化为[(C8H173NH]2SO4,可通过阴离子交换反应完成萃取过程;水相中的V(Ⅳ)经H2O2氧化后转化为V(Ⅴ),利用氨水中和将水相pH值提高,VO2+则转化为多种形式的阴离子;当钒以特定形式[H2V10O28]4-存在时,可获得较高的萃取率;在pH 1.2~2.4较宽范围内,钒均可以[H2V10O28]4-的形式存在,而且在此范围内增大pH值,[H2V10O28]4-浓度以及HSO4-解离度增加,钒萃取率因而提高;但当pH>1.9时,Fe(Ⅲ)会发生水解沉淀,阻碍两相分离并引起钒的共沉淀损失,对萃取极为不利;当pH < 2.0时,Fe(Ⅲ)以Fe3+形式存在,难以被TOA共萃,从而可达到萃钒除铁的目的。   相似文献   

16.
铜冶炼烟尘的综合利用   总被引:1,自引:0,他引:1  
牛建军 《矿冶工程》2022,42(3):118-120
以铜转炉烟尘为原料, 采用高压酸浸工艺回收有价金属和脱除砷。结果表明, 在硫酸浓度4 mol/L、浸出温度100 ℃、浸出时间2 h条件下, 烟尘中砷、铁和铜浸出率分别为94.14%、93.80%、91.80%, 浸出渣主要物相为硫酸铅(PbSO4);通过氧压沉砷处理浸出液, 使溶液中铁和砷形成臭葱石(FeAsO4·2H2O)而固化;沉砷后液主要物质为Cu2+和SO42-, 可用于电解回收铜。该工艺可以实现铜烟尘中有价金属的综合回收, 同时将砷以臭葱石形式固化, 减少对环境的污染。  相似文献   

17.
以云南某锌厂提供的复杂挥发窑渣为研究对象,在理论分析的基础上,采用H2O2-H2SO4水溶液体系常压条件下协同浸出其中的有价金属。以In、Cu及Zn浸出率为考察指标,探讨了H2O2用量、硫酸浓度、反应温度、反应时间、液固比等因素对In、Cu、Zn浸出率的影响。结果表明,在H2O2(30%)用量0.6 mL/g、硫酸浓度3 mol/L、反应温度80 ℃、反应时间2 h、液固比6∶1条件下,In浸出率93.92%、Cu浸出率89.84%、Zn浸出率66.49%。浸出渣中贵金属Ag含量大于0.01%,富集比3.23,初步实现了窑渣中有价金属的分离与综合利用。  相似文献   

18.
铅渣湿法处理新工艺研究   总被引:2,自引:1,他引:1  
以30%双氧水(H2O2)为促进剂、40%氟硅酸(H2SiF6)为溶剂,对铅渣进行湿法处理,制备了氟硅酸铅水溶液。研究了双氧水添加量对氟硅酸铅水溶液成分的影响,双氧水添加量、氟硅酸添加量、搅拌速度及搅拌时间等工艺参数对铅渣转化率的影响。最佳工艺条件为:W铅渣∶V氟硅酸∶V双氧水=2∶6∶1、搅拌速度200 r/min,搅拌时间35 min,在此条件下,铅渣完全转化为氟硅酸铅水溶液,氟硅酸铅水溶液中铅离子浓度为285.6 g/L,杂质离子含量满足GB/T 469-2005中Pb99.994的要求。此氟硅酸铅水溶液可用作铅电解液的铅离子补充剂。  相似文献   

19.
从铅冰铜中高效选择性提取铜的工艺研究   总被引:1,自引:0,他引:1  
采用高温高压纯氧氧化法选择性提取铅冰铜中铜, 研究了硫酸用量、浸出温度、反应时间、液固比、氧气压力、搅拌速度以及分散剂木质素用量对铜浸出率的影响及对浸出液中铁含量的影响。铅冰铜经氧压浸出后进行液固分离, 铅冰铜中的铜进入液相中, 绝大部分铁以赤铁矿的形式与铅、银、金等有价金属一起进入渣相中; 浸出后的硫酸铜溶液经调酸后直接进行旋流电解可得到合格的阴极铜产品, 浸出渣返回铅冶炼系统综合回收铅、银、金等有价元素。高温氧压浸出铅冰铜, 铜浸出率可达93.5%, 阴极铜产品质量达到99.975%, 有效实现了铅冰铜中铜的选择性提取。  相似文献   

20.
采用H2S(g)对含锡铁精矿进行还原硫化焙烧,可实现物料中锡的有效脱除。以热力学分析为基础,对含锡铁精矿中铁、锡物相的转变规律及脱锡机理进行了研究。结果表明,H2S(g)通过自身热分解反应生成H2(g)和S2(g)后,S2(g)优先与Fe3O4发生还原硫化反应生成Fe7S8,H2(g)则与SnO2优先发生还原反应生成Sn(l)。在焙烧系统中引入CO(g)可促进SnO2的还原和硫化。在混合气体(60vol%CO(g)+40vol%H2S(g))流量70 mL/min、焙烧温度1000℃、焙烧时间20 min、以及锡铁精矿粒度-74μm的条件下,含锡铁精矿中Sn脱除率可以达到95.34%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号