共查询到18条相似文献,搜索用时 78 毫秒
1.
半监督聚类就是利用样本的监督信息来帮助提升无监督学习的性能。在半监督聚类中,成对约束(must-link约束和cannot-link约束)作为样本的先验知识被广泛地使用。凝聚层次聚类(AHC)也叫合成聚类,是层次聚类法的一种。提出了一种基于成对约束的半监督凝聚层次聚类算法(PS-AHC),该算法利用成对约束来改变聚类簇之间的距离,使聚类簇之间的距离更真实。在UCI数据集上的实验表明,PS-AHC能有效地提高聚类的准确率,是一种有前景的半监督聚类算法。 相似文献
2.
谱聚类算法是基于谱图划分理论的一种机器学习算法,它能在任意形状的样本空间上聚类且收敛于全局最优解。但是传统的谱聚类算法很难正确发现密度相差比较大的簇,参数的选取要靠多次实验和个人经验。结合半监督聚类的思想,在给出一部分监督信息的前提下,提出了一种基于共享近邻的成对约束谱聚类算法(Pairwise Constrained Spectral Clustering Based on Shared Nearest Neighborhood,PCSC-SN)。PCSC-SN算法是用共享近邻去衡量数据对之间的相似性,用主动约束信息找到两个数据点之间的关系。在数据集UCI上做了一系列的实验,实验结果证明,与传统的聚类算法相比,PCSC-SN算法能够获得更好的聚类效果。 相似文献
3.
为了解决半监督聚类先验知识少、聚类偏差大的问题,提出了基于成对约束的主动半监督聚类算法.引入主动学习算法,增加约束集的信息量以使聚类效果更好;利用该约束集建立投影矩阵映射数据到低维空间,便于计算并提高聚类效果.算法中提出闭包替代思想,试图简化样本空间,以期获得降低聚类偏差的可能.由于聚类算法的实施对象是低维数据,成对约束集信息量大,聚类的时间效率以及性能均可保证.实验结果表明,采用主动学习的半监督聚类算法聚类效果提升显著,高效合理. 相似文献
4.
半监督聚类能利用少量标记数据来提高聚类算法性能,但大部分文本聚类算法无法直接应用成对约束等先验信息。针对文本数据高维稀疏的特点,提出了一种半监督文本聚类算法。将成对约束信息扩展后嵌入文档相似度矩阵,在此基础上根据已划分与未划分文档之间的统计信息逐步找出剩余未划分文本集合中密集的且与已划分聚类中心集合相似度较小的K个初始聚类中心集合,然后将剩余的相对较难区分的文档结合成对约束限制信息划分到K个初始聚类中心集合,最后通过融合成对约束违反惩罚的收敛准则函数对聚类结果进行进一步优化。算法在聚类过程中自动确定初始聚类中心集合,避免了K均值算法对初始聚类中心选择的敏感性。在几个中英文数据集上的实验结果表明,所提算法能有效地利用少量的成对约束先验信息提高聚类效果。 相似文献
5.
最大间隔聚类是近来聚类分析的一个研究热点,为进一步提高其聚类准确性,提出一种基于成对约束的半监督最大间隔聚类算法.该算法在最大间隔聚类的目标函数中添加针对成对约束的损失项,从而对违反给定约束条件的分界面进行惩罚.对所得到的非凸优化问题,本文提出一种基于约束凹凸过程的迭代算法来进行高效求解.实验表明,本文提出的算法能极大地提高最大间隔聚类的准确性,其聚类性能也明显优于其他两种半监督聚类算法. 相似文献
6.
魏曰海 《电脑编程技巧与维护》2013,(24):97-97,100
对于所提出的建立在成对约束基础之上的半监督凝聚层次聚类算法,对聚类簇进行半监督处理的最主要目的在于借助于对样本监督信息的合理应用,达到提高样本在无监督状态下学习性能的目标.在现阶段的技术条件支持下,以半监督聚类分析为核心,建立在must link以及cannot link基础之上的约束关系被广泛地应用于样本聚类分析的过程当中.从这一角度上来说,为了使聚类簇与聚类簇之间的距离关系表述更加的真实与精确,就要求通过对成对约束关系的综合应用,实现对聚类簇距离的有效调整与优化. 相似文献
7.
8.
针对半监督聚类算法性能受到成对约束数量多寡的限制问题,现有的研究大都依赖于原始成对约束的数量。因此,首先提出了基于灰关联分析的成对约束初始化算法(initialization algorithm of pair constraints based on grey relational analysis,PCIG)。该算法通过均衡接近度计算数据对象间的相似度,并根据相似度的取值来确定可信区间,然后借鉴网络结构初始化方法来扩充数据对象间的成对关系。最后,将其应用于标签传播聚类算法。通过在五个基准数据集上进行实验,基于改进成对约束扩充的标签传播聚类算法与其他方法相比NMI值和ARI值有所提升。实验结果证明了改进成对约束扩充可以有效改善标签传播算法的聚类效果。 相似文献
9.
成对约束的属性加权半监督模糊核聚类算法 总被引:1,自引:0,他引:1
在机器学习和数据挖掘中,带约束的半监督聚类是一个活跃的研究领域。为了利用约束条件获得表现更优异的聚类效果,提出了一种成对约束的属性加权半监督聚类算法,该方法充分考虑了属性间的不平衡性,在传统模糊聚类算法中融合半监督学习机制并通过Mercer核把原始的观察空间映射到高维特征空间。实验结果表明,该算法优于相似的成对约束的竞争群算法(PCCA)。 相似文献
10.
11.
确定数据集的最佳聚类数是聚类研究中的一个重要难题。为了更有效地确定数据集的最佳聚类数,该文提出了通过改进K-means算法并结合一个不依赖于具体算法的有效性指标Q(c)对数据集的最佳聚类数进行确定的方法。理论分析和实验结果证明了该方法具有良好的性能和有效性。 相似文献
12.
13.
针对Science杂志上提出的仿射传播(Affinity propagation)聚类产生指定类数的聚类结果时效率较低的问题,提出了基于多网格策略的快速算法。该算法采用多网格搜索策略来减少调用仿射传播算法的次数,改进偏向参数的上界以缩小搜索范围。新方法大幅度地提高了仿射传播聚类在指定类数下的速度性能。实验结果表明新方法十分有效,在运行时间上比现有方法减少了22%-90%。 相似文献
14.
基于成对约束的判别型半监督聚类分析 总被引:9,自引:1,他引:9
现有一些典型的半监督聚类方法一方面难以有效地解决成对约束的违反问题,另一方面未能同时处理高维数据.通过提出一种基于成对约束的判别型半监督聚类分析方法来同时解决上述问题.该方法有效地利用了监督信息集成数据降维和聚类,即在投影空间中使用基于成对约束的K均值算法对数据聚类,再利用聚类结果选择投影空间.同时,该算法降低了基于约束的半监督聚类算法的计算复杂度,并解决了聚类过程中成对约束的违反问题.在一组真实数据集上的实验结果表明,与现有相关半监督聚类算法相比,新方法不仅能够处理高维数据,还有效地提高了聚类性能. 相似文献
15.
16.
基于层次划分的最佳聚类数确定方法 总被引:20,自引:0,他引:20
确定数据集的聚类数目是聚类分析中一项基础性的难题.常用的trail-and-error方法通常依赖于特定的聚类算法,且在大型数据集上计算效率欠佳.提出一种基于层次思想的计算方法,不需要对数据集进行反复聚类,它首先扫描数据集获得CF(clusteringfeature,聚类特征)统计值,然后自底向上地生成不同层次的数据集划分,增量地构建一条关于不同层次划分的聚类质量曲线;曲线极值点所对应的划分用于估计最佳的聚类数目.另外,还提出一种新的聚类有效性指标用于衡量不同划分的聚类质量.该指标着重于簇的几何结构且独立于具体的聚类算法,能够识别噪声和复杂形状的簇.在实际数据和合成数据上的实验结果表明,新方法的性能优于新近提出的其他指标,同时大幅度提高了计算效率. 相似文献
17.
给出了配对组合测试参数约束分类方法及相关定义。重点对有2值型约束的情况进行了研究,得出有2值型约束存在时虽然所需覆盖的配对数减少,但测试集不一定减小的结论;给出有2值型约束时测试集的最小下限,并证明之。最后介绍了能够有效解决配对组合测试参数约束问题的HPC_IPO约束控制算法。 相似文献
18.
偏标记数据消歧是利用偏标记数据进行机器学习的基础.针对偏标记数据中广泛存在的数据不平衡问题, 以及现有消歧算法对样本间约束信息利用不足的问题, 本文提出一种基于成对约束的偏标记数据消歧算法.首先, 基于低秩表示, 推导出数据不平衡条件下样本低秩表示系数和样本相似度之间的关系; 其次, 基于推导结果, 分别构建基于样本间正约束和负约束的图模型, 通过最小化图模型的能量函数求解偏标记数据的标签.在5个公开数据集上的实验结果表明本文方法相对基准算法在消歧准确率上平均提高了2.9 % ~ 14.9 %. 相似文献