共查询到17条相似文献,搜索用时 144 毫秒
1.
半监督聚类就是利用样本的监督信息来帮助提升无监督学习的性能。在半监督聚类中,成对约束(must-link约束和cannot-link约束)作为样本的先验知识被广泛地使用。凝聚层次聚类(AHC)也叫合成聚类,是层次聚类法的一种。提出了一种基于成对约束的半监督凝聚层次聚类算法(PS-AHC),该算法利用成对约束来改变聚类簇之间的距离,使聚类簇之间的距离更真实。在UCI数据集上的实验表明,PS-AHC能有效地提高聚类的准确率,是一种有前景的半监督聚类算法。 相似文献
2.
谱聚类算法是基于谱图划分理论的一种机器学习算法,它能在任意形状的样本空间上聚类且收敛于全局最优解。但是传统的谱聚类算法很难正确发现密度相差比较大的簇,参数的选取要靠多次实验和个人经验。结合半监督聚类的思想,在给出一部分监督信息的前提下,提出了一种基于共享近邻的成对约束谱聚类算法(Pairwise Constrained Spectral Clustering Based on Shared Nearest Neighborhood,PCSC-SN)。PCSC-SN算法是用共享近邻去衡量数据对之间的相似性,用主动约束信息找到两个数据点之间的关系。在数据集UCI上做了一系列的实验,实验结果证明,与传统的聚类算法相比,PCSC-SN算法能够获得更好的聚类效果。 相似文献
3.
为了解决半监督聚类先验知识少、聚类偏差大的问题,提出了基于成对约束的主动半监督聚类算法.引入主动学习算法,增加约束集的信息量以使聚类效果更好;利用该约束集建立投影矩阵映射数据到低维空间,便于计算并提高聚类效果.算法中提出闭包替代思想,试图简化样本空间,以期获得降低聚类偏差的可能.由于聚类算法的实施对象是低维数据,成对约束集信息量大,聚类的时间效率以及性能均可保证.实验结果表明,采用主动学习的半监督聚类算法聚类效果提升显著,高效合理. 相似文献
4.
半监督聚类能利用少量标记数据来提高聚类算法性能,但大部分文本聚类算法无法直接应用成对约束等先验信息。针对文本数据高维稀疏的特点,提出了一种半监督文本聚类算法。将成对约束信息扩展后嵌入文档相似度矩阵,在此基础上根据已划分与未划分文档之间的统计信息逐步找出剩余未划分文本集合中密集的且与已划分聚类中心集合相似度较小的K个初始聚类中心集合,然后将剩余的相对较难区分的文档结合成对约束限制信息划分到K个初始聚类中心集合,最后通过融合成对约束违反惩罚的收敛准则函数对聚类结果进行进一步优化。算法在聚类过程中自动确定初始聚类中心集合,避免了K均值算法对初始聚类中心选择的敏感性。在几个中英文数据集上的实验结果表明,所提算法能有效地利用少量的成对约束先验信息提高聚类效果。 相似文献
5.
最大间隔聚类是近来聚类分析的一个研究热点,为进一步提高其聚类准确性,提出一种基于成对约束的半监督最大间隔聚类算法.该算法在最大间隔聚类的目标函数中添加针对成对约束的损失项,从而对违反给定约束条件的分界面进行惩罚.对所得到的非凸优化问题,本文提出一种基于约束凹凸过程的迭代算法来进行高效求解.实验表明,本文提出的算法能极大地提高最大间隔聚类的准确性,其聚类性能也明显优于其他两种半监督聚类算法. 相似文献
6.
魏曰海 《电脑编程技巧与维护》2013,(24):97-97,100
对于所提出的建立在成对约束基础之上的半监督凝聚层次聚类算法,对聚类簇进行半监督处理的最主要目的在于借助于对样本监督信息的合理应用,达到提高样本在无监督状态下学习性能的目标.在现阶段的技术条件支持下,以半监督聚类分析为核心,建立在must link以及cannot link基础之上的约束关系被广泛地应用于样本聚类分析的过程当中.从这一角度上来说,为了使聚类簇与聚类簇之间的距离关系表述更加的真实与精确,就要求通过对成对约束关系的综合应用,实现对聚类簇距离的有效调整与优化. 相似文献
7.
成对约束的属性加权半监督模糊核聚类算法 总被引:1,自引:0,他引:1
在机器学习和数据挖掘中,带约束的半监督聚类是一个活跃的研究领域。为了利用约束条件获得表现更优异的聚类效果,提出了一种成对约束的属性加权半监督聚类算法,该方法充分考虑了属性间的不平衡性,在传统模糊聚类算法中融合半监督学习机制并通过Mercer核把原始的观察空间映射到高维特征空间。实验结果表明,该算法优于相似的成对约束的竞争群算法(PCCA)。 相似文献
8.
针对半监督聚类算法性能受到成对约束数量多寡的限制问题,现有的研究大都依赖于原始成对约束的数量。因此,首先提出了基于灰关联分析的成对约束初始化算法(initialization algorithm of pair constraints based on grey relational analysis,PCIG)。该算法通过均衡接近度计算数据对象间的相似度,并根据相似度的取值来确定可信区间,然后借鉴网络结构初始化方法来扩充数据对象间的成对关系。最后,将其应用于标签传播聚类算法。通过在五个基准数据集上进行实验,基于改进成对约束扩充的标签传播聚类算法与其他方法相比NMI值和ARI值有所提升。实验结果证明了改进成对约束扩充可以有效改善标签传播算法的聚类效果。 相似文献
9.
10.
11.
12.
聚类通常被认为是一种无监督的数据分析方法,然而在实际问题中可以很容易地获得有限的样本先验信息,如样本的成对限制信息.大量研究表明,在聚类搜索过程中充分利用先验信息会显著提高聚类算法的性能.首先分析了在聚类过程中仅利用成对限制信息存在的不足,尝试探索数据集本身固有的先验信息--空间一致性先验信息,并提出利用这类先验信息的具体方法.接着,将两类先验信息同时引入经典的谱聚类算法中,提出一种密度敏感的半监督谱聚类算法(density-sensitive semi-supervised spectral clustering algorithm,简称DS-SSC).两类先验信息在指导聚类搜索的过程中能够起到相辅相成的作用,这使得DS-SSC算法相对于仅利用成对限制信息的聚类算法在聚类性能上有了显著的提高.在UCI基准数据集、USPS手写体数字集以及TREC的文本数据集上的实验结果验证了这一点. 相似文献
13.
14.
物联网监测点相邻关系判定是实现物联网监测异常数据审核时需要解决的一个重要问题。为了克服传统的基于行政区域或地理位置直接指定相邻关系存在的不足,采用聚类分析方法,用轮廓系数作为确定簇数和选择算法的依据,实现了一种基于历史监测数据的物联网监测点逻辑相邻关系判定方法。使用实际监测数据对该方法进行了验证,实验结果表明,所得到的相邻关系符合监测数据的实际关系,能够为物联网监测数据有效性审核提供更加科学合理的处理依据。 相似文献
15.
现有一些典型的半监督聚类方法一方面难以有效地解决成对约束的违反问题,另一方面未能同时处理高维数据.通过提出一种基于成对约束的判别型半监督聚类分析方法来同时解决上述问题.该方法有效地利用了监督信息集成数据降维和聚类,即在投影空间中使用基于成对约束的K均值算法对数据聚类,再利用聚类结果选择投影空间.同时,该算法降低了基于约束的半监督聚类算法的计算复杂度,并解决了聚类过程中成对约束的违反问题.在一组真实数据集上的实验结果表明,与现有相关半监督聚类算法相比,新方法不仅能够处理高维数据,还有效地提高了聚类性能. 相似文献
16.
针对Science杂志上提出的仿射传播(Affinity propagation)聚类产生指定类数的聚类结果时效率较低的问题,提出了基于多网格策略的快速算法。该算法采用多网格搜索策略来减少调用仿射传播算法的次数,改进偏向参数的上界以缩小搜索范围。新方法大幅度地提高了仿射传播聚类在指定类数下的速度性能。实验结果表明新方法十分有效,在运行时间上比现有方法减少了22%-90%。 相似文献
17.
模糊聚类是模式识别、机器学习和图像处理等领域的重要研究内容。模糊C-均值聚类算法是最常用的模糊聚类实现算法,该算法需要预先给定聚类数才能对数据集进行聚类。提出了一种新的聚类有效性指标,对聚类结果进行有效性验证。该指标从划分熵、隶属度、几何结构角度,定义了紧凑度、分离度、重叠度三个重要特征测量。在此基础上,提出了一种最佳聚类数确定方法。将新聚类有效性指标和传统有效性指标在6个人工数据集和3个真实数据集进行实验验证。实验结果表明,所提出的指标和方法能够有效地对聚类结果进行评估,适合确定样本的最佳聚类数。 相似文献