首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to better investigate the compositions and the origins of fluids associated with diamond growth, we have carried-out combined noble gas (He and Ar), C and N isotope, K, Ca and halogen (Cl, Br, I) determinations on fragments of individual microinclusion-bearing diamonds from the Panda kimberlite, North West Territories, Canada. The fluid concentrations of halogens and noble gases in Panda diamonds are enriched by several orders of magnitude over typical upper mantle abundances. However, noble gas, C and N isotopic ratios (3He/4He = 4-6 Ra, 40Ar/36Ar = 20,000-30,000, δ13C = −4.5‰ to −6.9‰ and δ15N = −1.2‰ to −8.8‰) are within the worldwide range determined for fibrous diamonds and similar to the mid ocean ridge basalt (MORB) source value. The high 36Ar content of the diamonds (>1 × 10−9 cm3/g) is at least an order of magnitude higher than any previously reported mantle sample and enables the 36Ar content of the subcontinental lithospheric mantle to be estimated at ∼0.6 × 10−12 cm3/g, again similar to estimates for the MORB source. Three fluid types distinguished on the basis of Ca-K-Cl compositions are consistent with carbonatitic, silicic and saline end-members identified in previous studies of diamonds from worldwide sources. These fluid end-members also have distinct halogen ratios (Br/Cl and I/Cl). The role of subducted seawater-derived halogens, originally invoked to explain some of the halogen ratio variations in diamonds, is not considered an essential component in the formation of the fluids. In contrast, it is considered that large halogen fractionation of a primitive mantle ratio occurs during fluid-melt partitioning in forming silicic fluids, and during separation of an immiscible saline fluid.  相似文献   

2.
Oxygen isotope microanalyses of authigenic quartz, in combination with temperatures of quartz precipitation constrained by fluid inclusion microthermometry and burial history modelling, are employed to trace the origin and evolution of pore waters in three distinct reservoirs of the Brae Formation in the Miller and Kingfisher Fields (North Sea). Oxygen isotope ratios of quartz cements were measured in situ in nine sandstone thin sections with a Cameca ims-4f ion microprobe. In conjunction with quartz cement paragenesis in the reservoirs, constrained from textural and cathodoluminescence (CL) microscopy studies, pore water evolution was reconstructed from the time of deposition of the sandstones in the Upper Jurassic until the present.CL photomicrographs of quartz overgrowths in the Brae Formation sandstones show three cement zones (A, B and C) which can be related to different oxygen isotope compositions: (1) the earliest, and thinnest, zone A (homogeneous CL pattern with probable δ18O values between +23‰ and +26‰—direct measurements were not possible) precipitated in the sandstones at temperatures <60 °C; (2) the second zone B (complex CL pattern and directly measured δ18O values between +15‰ and +18‰) precipitated in the sandstones most likely between 70 and 90 °C; (3) the third zone C (homogeneous CL pattern and directly measured δ18O values between +16‰ and +22‰) precipitated in the sandstones most likely at temperatures >90 °C. Calculated oxygen isotope compositions of pore waters show that zone A quartz cements, and enclosing concretionary calcite, precipitated from a meteoric-type fluid (∼−7‰) during shallow burial (<1.5 km). Zone B quartz cements precipitated from fluids which evolved in composition from a meteoric-type fluid (δ18O −7‰) to a more 18O-enriched fluid (δ18O −4‰) as burial continued to ∼3.0 km. Data from zone C quartz cements are consistent with further fluid evolution from δ18O −4‰ to basinal-type fluids with δ18O similar to the present-day formation water oxygen isotope composition (+0.6‰ at 4.0 km burial). A similar pore water evolution can be derived for all three reservoirs studied, indicating that hydrogeologic evolution was similar across sandstones of the whole Brae Formation.The quartz cement zones observed in the Brae Formation sandstones, and the pore water history derived for the area studied, is analogous to published petrographic and pore water evolution data from the nearby Brent Group reservoirs and from reservoirs located in the Haltenbanken area on the Atlantic margin offshore Norway. Considering quartz cement is a major porosity-occluding phase in many reservoir sandstones, and because pore waters both dissolve quartz and carry the dissolved silica to cementation sites, the data presented are valuable for improving the understanding and prediction of reservoir quality development in sandstones globally.  相似文献   

3.
Graphite in deep crustal enderbitic (orthopyroxene + garnet + plagioclase + quartz) granulites (740°C, 8.9 kb) of Nilgiri hills, southern India were investigated for their spectroscopic and isotopic characteristics. Four types of graphite crystals were identified. The first type (GrI), which is interstitial to other mineral grains, can be grouped into two subtypes, GrIA and GrIB. GrIA is either irregular in shape or deformed, and rough textured with average δ13C values of −12.7 ± 0.4‰ (n = 3). A later generation of interstitial graphite (GrIB) shows polygonal crystal shapes and highly reflecting smooth surface features. These graphite grains are more common and have δ13C values of −11.9 ± 0.3‰ (n = 14). Both subtypes show well-defined Raman shifts suggesting a highly crystalline nature. Cores of interstitial graphite grains have, on average, lower δ13C values by ∼0.5‰ compared to that of the rim. The second type of graphite (GrII) occurs as solid inclusions in silicate minerals, commonly forming regular hexagonal crystals with a slightly disordered structure. The third type of graphite (GrIII) is associated with solid inclusions (up to 100 μm) that have decrepitation halos of numerous small (<15 μm) satellite fluid inclusions of pure CO2 with varying density (1.105 to 0.75 g/cm3). The fourth type of graphite (GrIV) is found as daughter crystals within primary type CO2-fluid inclusions in garnet and quartz. These fluid inclusions have a range of densities (1.05 to 0.90 g/cm3), but in general are significantly less dense than graphite-free primary, pure CO2 fluid inclusions (1.12 g/cm3). Raman spectral characteristics of graphite inside fluid inclusions suggest graphite crystallization at low temperature (∼ 500°C). The precipitation of graphite probably occurred during the isobaric cooling of CO2-rich peak metamorphic fluid as a result of oxyexsolution of oxide phases. The oxyexsolution process is evidenced by the magnetite-ilmenite granular exsolution textures and the systematic presence of numerous micron-sized rutile and other oxide inclusions in association with fluid inclusions within garnet, plagioclase, and quartz.The carbon isotope compositions of coexisting CO2 (in fluid inclusions) and graphite show a fractionation (α2CO−gr) of ∼6‰ in garnet, consistent with the existing theoretical estimates of α2CO−gr at 800°C. A subsequent generation of CO2 inclusions trapped in matrix quartz and quartz segregation have higher δ13C values, −4‰ and −2.9‰ respectively. Graphite in quartz segregations also has higher δ13C values (−9.8‰) than those in enderbite (−12.7‰). Micro-graphite crystals included in garnet, quartz (enderbite), and quartz (segregation) have average δ13C values of −11.1, −10.4, and −8.7‰ respectively, indicating progressive enrichment in 13C with a decrease in temperature of recrystallization of respective minerals. This progressive enrichment is also observed in carbon isotope compositions of fluid inclusion CO2, suggesting isotopic equilibrium during graphite precipitation from CO2 fluids. Thus, the carbon isotope record preserved in these rocks by the interstitial graphite, CO2 fluid in enderbite, graphite microcrystals, graphite in quartz segregation, and CO2 fluid in quartz segregation, suggests a temperature-controlled isotopic evolution. This evolution is in accordance with a closed system Rayleigh-type graphite precipitation process which progressively enriched residual CO2 in 13C.  相似文献   

4.
The noble gases (He, Ne, Ar, Kr and Xe) are powerful geochemical tracers because they have distinctive isotopic compositions in the atmosphere, crust and mantle. This study illustrates how noble gases can be used to trace fluid origins in high-temperature metamorphic and mineralising environments; and at the same time provides new information on the composition of noble gases in deeper parts of the crust than have been sampled previously.We report data for H2O and CO2 fluid inclusions trapped at greenschist to amphibolite facies metamorphic conditions associated with three different styles of mineralisation and alteration in the Proterozoic Mt Isa Inlier of Australia. Sulphide fluid inclusions are dominated by crustal 4He. However, co-variations in fluid inclusion 20Ne/22Ne, 21Ne/22Ne, 40Ar/36Ar and 136Xe/130Xe indicate noble gases were derived from three or more reservoirs. In most cases, the fluid inclusions elemental noble gas ratios (e.g. Ne/Xe) are close to the ranges expected in sedimentary and crystalline rocks. However, the elemental ratios have been modified in some of the samples providing evidence for independent pulses of CO2, and interaction of CO2 with high-salinity aqueous fluids.Compositional variation is attributed to mixing of: (i) magmatic fluids (or deeply sourced metamorphic fluids) characterised by basement-derived noble gases with 20Ne/22Ne ∼ 8.4, 21Ne/22Ne ∼ 0.4, 40Ar/36Ar ∼ 40,000 and 136Xe/130Xe ∼ 8; (ii) basinal-metamorphic fluids with a narrow range of compositions including near-atmospheric values and (iii) noble gases derived from the meta-sedimentary host-rocks with 20Ne/22Ne ∼ 8-9.8, 21Ne/22Ne < 0.1, 40Ar/36Ar < 2500 and 136Xe/130Xe ∼ 2.2.These data provide the strongest geochemical evidence available for the involvement of fluids from two distinct geochemical reservoirs in Mt Isa’s largest ore deposits. In addition the data show how noble gases in fluid inclusions can provide information on fluid origins, the composition of the crust’s major lithologies, fluid-rock interactions and fluid-fluid mixing or immiscibility processes.  相似文献   

5.
More than 600 specimens of ∼3.5 Ga-old hydrothermal silica dikes from the North Pole area, Pilbara craton, Western Australia, have been studied petrographically. The kerogens in 44 samples have been analyzed isotopically (C and N) and chemically (C, N, and H). The silica dikes are composed mainly of fine-grained silica (modal abundance: >97%) and are classified into two types by minor mineral assemblages: B(black)-type and G(gray)-type. The B-type silica dikes contain kerogen (0.37 to 6.72 mgC/g; average 2.44 mgC/g, n = 21) and disseminated sulfides, dominantly pyrite and Fe-poor sphalerite. In some cases, carbonate and apatite are also present. Their silica-dominated and sulfide-poor mineral assemblages suggest precipitation from low-temperature reducing hydrothermal fluid (likely 100-200°C). On the other hand, the G-type silica dikes are sulfide-free and concentrations of kerogen are relatively low (0.05 to 0.41 mgC/g; average 0.17 mgC/g, n = 13). They typically contain Fe-oxide (mainly hematite) which commonly replaces cubic pyrite and rhombic carbonate. Some G-types occur along secondary quartz veins. These textures indicate that the G-type silica dikes were formed by postdepositional metasomatism (oxidation) of the B-types, and that the B-types probably possess premetasomatic signatures. The δ13C values of kerogen in the B-types are −38.1 to −33.1‰ (average −35.9‰, n = 21), which are ∼4‰ lower than those of the G-types (−34.5 to −30.0‰; average −32.2‰, n = 19), and ∼6‰ lower than bedded chert (−31.2 to −29.4‰; average −30.5‰, n = 4). This indicates the preferential loss of 12C during the metasomatism (estimated fractionation factor: 0.9985). Considering the metasomatic effect on carbon isotopes with probably minor diagenetic and metamorphic overprints, we conclude that the original δ13C values of the kerogen in the silica dikes would have been heterogeneous (∼5‰) and at least some material had initial δ13C values of ≤ −38‰. The inferred 13C-depletions of organic carbon could have been produced by anaerobic chemoautotrophs such as methanogen, but not by aerobic photoautotrophs. This is consistent with the estimated physical and chemical condition of the hydrothermal fluid, which was probably habitable for anaerobic and thermophilic/hyperthermophilic chemoautotrophs. Alternatively, the organic matter may have been possibly produced by abiological reaction such as Fischer-Tropsch Type (FTT) synthesis under the hydrothermal condition. However, the estimated condition is inconsistent with the presence of the effective catalysts for the FTT reaction (i.e., Fe-Ni alloy, magnetite, and hematite). These lines of evidence suggest the possible existence of biosphere in the ∼3.5 Ga sub-seafloor hydrothermal system.  相似文献   

6.
胶东金矿床碳酸盐矿物的碳-氧和锶-钕同位素地球化学研究   总被引:16,自引:8,他引:16  
对胶东四类金矿床(盆地边缘砾岩型、斑岩型-浅成热液型、石英脉型和破碎带蚀变岩型)矿石中的碳酸盐矿物开展了系统的碳-氧同位素和锶-钕同位素地球化学研究。研究结果表明,与宏观的成矿地质条件和矿床地质特征相对应,山东金矿床可能有亲岩浆岩和亲沉积盆地两个不同的成矿系统。前者包括斑岩型-浅成热液型、石英脉型和破碎带蚀变岩型三类金矿床,后者指盆地边缘砾岩型金矿床,二者具有不同的碳-氧和锶-钕同位素地球化学特征。山东亲岩浆岩系列的金矿床,其锶-钕同位素与同时代的幔源岩浆岩一致,碳同位素显示幔源碳和岩浆碳的特征,氧同位素则显示初生水与大气降水不同比例混合的可能性,因此有可能是以CO2为主、富合成矿金属的地幔流体与浅部下渗大气降水相互作用的结果。而与岩浆岩关系不密切、主要受盆地边缘断裂控制的盆地边缘砾岩型金矿床,其碳-氧和锶-钕同位素组成均较分散,可能主要与地壳浅部下渗大气降水对上地壳各种岩石淋滤萃取演化而成的成矿流体有关。  相似文献   

7.
Fluid origins in the sandstone-hosted Pb-Zn class of ore deposit have been investigated in three deposits from Scandinavia; Laisvall, Vassbo and Osen. The deposits studied are hosted by autochthonous Cambrian sandstones that preserve a near original structural relationship to the underlying Precambrian basement, enabling the role of basement interaction to be assessed.Mineral samples have been collected from across the paragenetic sequence: sphalerite, galena, pyrite, fluorite and barite, of impregnation and related joint-hosted mineralization. Fluid-inclusion halogen (Cl, Br and I) and noble gas isotope (40Ar, 36Ar, 84Kr) compositions were determined simultaneously by noble gas mass spectrometry of irradiated sample splits. Complementary He isotope analyses are obtained from nonirradiated splits of the same samples.3He/4He values at Laisvall and Osen are highly radiogenic, 0.02 Ra, and the 4He/40Ar* ratio extends to values greater than the crustal production value of 5, characteristic of low-temperature crustal fluids. At Vassbo, a slightly elevated 3He/4He ratio of 0.1-0.3 Ra is compatible with a very minor mantle component (1%-4%) suggesting a distal source for the basinal brine-dominated fluid.Br/Cl molar ratios 3.2-8.2 × 10−3 are greater than the present seawater value of 1.54 × 10−3 and correspond with I/Cl molar ratios in the range 64-1600 × 10−6. The upper limits of both the I/Cl and Br/Cl values are amongst the highest measured in crustal fluids. Together, the data indicate acquisition of salinity by the evaporation of seawater beyond the point of halite saturation and subsequent fluid interaction with I-rich organic matter in the subsurface. The data are compatible with the independent transport of sulfate and sulfide and indicate that fluids responsible for joint-hosted mineralization were distinct to those responsible for impregnation mineralization.All three deposits preserve fluids with 40Ar/36Ar in the range of 6,000-10,000 and fluid inclusion 40Ar* concentrations of >0.02-0.05 cm3cm−3. Fluid-inclusion 4He concentrations are also extremely elevated with maximum values of ∼0.1 cm3cm−3 in Laisvall fluorite and sphalerite. The high 40Ar/36Ar values, together with the high 4He and 40Ar* concentrations, result from a very long premineralization crustal residence time on the order of 100-200 Ma.Together, the noble gas and halogen data are compatible with a Caledonian mineralization event (∼425 Ma) caused by mixing of two or more, long-lived, hydrothermal basinal brines and pore fluids at the sites of mineralization. The data suggest negligible recharge of the basinal brines by meteoric water and indicate extensive fluid-basement interaction before mineralization. The similar noble gas composition of each deposit, suggests that similar processes operated at all three deposits and favors a single-pass fluid-flow model for mineralization.  相似文献   

8.
Shallow groundwater collected in Chaozhou,Huizhou,and Guangzhou allowed testing of concentrations and the isotope ratios of noble gases.Based on the calculated noble gas temperature(NGT)and the ratio of noble gas isotopes,the recharge temperature,recharge source,and residence time of groundwater can be calculated.In addition,the contribution of noble gas components from different sources to the sample components can be assessed.In the Huizhou area,according to the 1/Xe vs.Ne/Xe and NGT data,the shallow sandstone-confined water samples in the Shiba area and the unconfined water samples of the Huangshadong are in different temperature ranges,indicating that they have different recharge sources,both in time or space.The He components in the samples are calculated to obtain the content of radiogenic 4He in the crust and to simulate the groundwater ages.The noble gas isotope ratios show the addition of mantle components into the basalt aquifers and sandstone aquifers in Chaozhou and Huizhou.Except for atmospheric and crustal sources,there is a certain proportion of mantle-derived components in the shallow underground cold water in Huizhou and Chaozhou.The noble gases in the Chaozhou groundwater have an obvious mantle signature,allowing speculation that there is a deep fluid carrying mantle characteristics.This upwelling of mantle-derived material might be caused by the India-Eurasia collision or that between the Philippine Sea Plate and the Eurasian Plate.  相似文献   

9.
The analysis of gaseous compositions from Solfatara (Campi Flegrei, South Italy) fumaroles since the early 1980s, clearly reveals a double thermobarometric signature. A first signature at temperatures of about 360 °C was inferred by methane-based chemical-isotopic geoindicators and by the H2/Ar geothermometer. These high temperatures, close to the critical point of water, are representative of a deep zone where magmatic gases flash the hydrothermal liquid, forming a gas plume. A second signature was found to be at around 200-240 °C. At these temperatures, the kinetically fast reactive species (H2 and CO) re-equilibrate in a pure vapor phase during the rise of the plume. A combination of these observations with an original interpretation of the oxygen isotopic composition of the two dominant species, i.e. H2O and CO2, shed light on the origin of fumarolic fluids by showing that effluents are mixture between fluids degassed from a magma body and the vapor generated at about 360 °C by the vaporization of hydrothermal liquids. A typical ‘andesitic’ water type (δD ∼ −20‰, δ18O ∼10‰) and a CO2-rich composition (XCO20.4) has been inferred for the magmatic fluids, while for the hydrothermal component a meteoric origin and a CO2 fugacity fixed by fluid-rock reaction at high temperatures have been estimated. In the time the fraction of magmatic fluids in the fumaroles increased (up to ∼0.5) at each seismic and ground uplift crisis (bradyseism) which occurred at Campi Flegrei, suggesting that bradyseismic crises are triggered by periodic injections of CO2-rich magmatic fluids at the bottom of the hydrothermal system.  相似文献   

10.
Diamonds from high- and low-MgO groups of eclogite xenoliths from the Jericho kimberlite, Slave Craton, Canada were analyzed for carbon isotope compositions and nitrogen contents. Diamonds extracted from the two groups show remarkably different nitrogen abundances and δ13C values. While diamonds from high-MgO eclogites have low nitrogen contents (5-82 ppm) and extremely low δ13C values clustering at ∼−40‰, diamonds from the low-MgO eclogites have high nitrogen contents (>1200 ppm) and δ13C values from −3.5‰ to −5.3‰.Coupled cathodoluminescence (CL) imaging and SIMS analysis of the Jericho diamonds provides insight into diamond growth processes. Diamonds from the high-MgO eclogites display little CL structure and generally have constant δ13C values and nitrogen contents. Some of these diamonds have secondary rims with increasing δ13C values from −40‰ to ∼−34‰, which suggests secondary diamond growth occurred from an oxidized growth medium. The extreme negative δ13C values of the high-MgO eclogite diamonds cannot be produced by Rayleigh isotopic fractionation of average mantle-derived carbon (−5‰) or carbon derived from typical organic matter (∼−25‰). However, excursions in δ13C values to −60‰ are known in the organic sedimentary record at ca. 2.7 and 2.0 Ga, such that diamonds from the high-MgO eclogites could have formed from similar organic matter brought into the Slave lithospheric mantle by subduction.SIMS analyses of a diamond from a low-MgO eclogite show an outer core with systematic rimwards increases in δ13C values coupled with decreases in nitrogen contents, and a rim with pronounced alternating growth zones. The coupled δ13C-nitrogen data suggest that the diamond precipitated during fractional crystallization from an oxidized fluid/melt from which nitrogen was progressively depleted during growth. Model calculations of the co-variation of δ13C-N yielded a partition coefficient (KN) value of 5, indicating that nitrogen is strongly compatible in diamond relative to the growth medium. δ13C values of diamond cores (−4‰) dictate the growth medium had higher δ13C values than primary mantle-derived carbon. Therefore, possible carbon sources for the low-MgO eclogite diamonds include oxidized mantle-derived (e.g. protokimberlite or carbonatite) fluids/melts that underwent some fractionation during migration or, devolatilized subducted carbonates.  相似文献   

11.
We present a double-spike isotope dilution MC-ICP-MS technique for the determination of germanium (Ge) isotope fractionation. Using this technique we determined Ge isotope compositions of geothermal spring fluids, a Columbia River Basalt sample, and an in-house diatom standard. Our technique uses a 73Ge/70Ge double spike in combination with hydride generation for Ge extraction from the sample matrix. Fractionation is determined on the 74Ge/72Ge mass ratio. The double spike allows us to effectively correct analytical isotope fractionation. Our external standard reproducibility is 0.4‰ (2 SD) over the course of several months. The minimum quantity of Ge needed for isotope analysis is approximately 2 ng. Consistent with previous work on geothermal fluids, Ge in the geothermal spring samples presented here is enriched over Si as compared to low temperature weathering signatures. This observation is typically interpreted as Ge exclusion during silicate mineral precipitation (e.g., quartz). Our isotope results indicate that the analyzed high temperature fluids fractionate Ge isotopes with a range in δ74Ge between −0.4‰ and −1.4‰ relative to a Columbia River basalt. We cautiously interpret the observed fractionation as preferential removal of heavy Ge isotopes out of solution during cooling of the hydrothermal fluid and subsequent precipitation of quartz.  相似文献   

12.
工准噶尔库布苏金矿床岩脉与金矿成因关系的研究   总被引:4,自引:2,他引:2  
高怀忠  孙华山 《岩石学报》2000,16(4):595-601
库布苏金矿床的三个金矿带均产于闪长玢岩和花岗闪长斑岩内。为了研究这些岩脉与金矿的成因关系,测定了含金石英脉中英流体包裹体均一温度、成分、盐度和H2O的氢氧同位素,分析了含英脉和相关脉岩及围岩的稀土元素及微量元素,发现石英流体包裹体属有较高的均一温度、低盐度、富CO2的还原性流体,其阳离子组合为Ca^2+〉Na^+〉K^+或Na^+〉K^+〉Mg^2+,阴离子组合属Cl^1〉SO4^2-〉F^-型,  相似文献   

13.
Abundances and isotopic compositions of nitrogen and argon have been investigated in bulk samples as well as in acid-resistant C-rich residues of a suite of ureilites consisting of six monomict (Haverö, Kenna, Lahrauli, ALH81101, ALH82130, LEW85328), three polymict (Nilpena, EET87720, EET83309), and the diamond-free ureilite ALH78019. Nitrogen in bulk ureilites varies from 6.3 ppm (in ALH 78019) to ∼55 ppm (in ALH82130), whereas C-rich acid residues have ∼65 to ∼530 ppm N, showing approximately an order of magnitude enrichment, compared with the bulk ureilites, somewhat less than trapped noble gases. Unlike trapped noble gases that show uniform isotopic composition, nitrogen shows a wide variation in δ15N values within a given ureilite as well as among different ureilites. The variations observed in δ15N among the ureilites studied here suggest the presence of at least five nitrogen components. The characteristics of these five N components and their carrier phases have been identified through their release temperature during pyrolysis and combustion, their association with trapped noble gases, and their carbon (monitored as CO + CO2 generated during combustion). Carrier phases are as follows: 1) Amorphous C, as found in diamond-free ureilite ALH78019, combusting at ≤500°C, with δ15N = -21‰ and accompanied by trapped noble gases. Amorphous C in all diamond-bearing ureilites has evolved from this primary component through almost complete loss of noble gases, but only partial N loss, leading to variable enrichments in 15N. 2) Amorphous C as found in EET83309, with similar release characteristics as component 1, δ15N ≥ 50‰ and associated with trapped noble gases. 3) Graphite, as clearly seen in ALH78019, combusting at ≥700°C, δ15N ≥ 19‰ and devoid of noble gases. 4) Diamond, combusting at 600-800°C, δ15N ≤ -100‰ and accompanied by trapped noble gases. 5) Acid-soluble phases (silicates and metal) as inferred from mass balance are expected to contain a large proportion of nitrogen (18 to 75%) with δ15N in the range -25‰ to 600‰. Each of the ureilites contains at least three N components carried by acid-resistant C phases (amorphous C of type 1 or 2, graphite, and diamond) and one acid-soluble phase in different proportions, resulting in the observed heterogeneity in δ15N. In addition to these five widespread components, EET83309 needs an additional sixth N component carried by a C phase, combusting at <700°C, with δ15N ≥ 153‰ and accompanied by noble gases. It could be either noble gas-bearing graphite or more likely cohenite. Some excursions in the δ15N release patterns of polymict ureilites are suggestive of contributions from foreign clasts that might be present in them.Nitrogen isotopic systematics of EET83309 clearly confirm the absence of diamond in this polymict ureilite, whereas the presence of diamond is clearly indicated for ALH82130. Amorphous C in ALH78019 exhibits close similarities to phase Q of chondrites.The uniform δ15N value of −113 ± 13 ‰ for diamond from both monomict and polymict ureilites and its independence from bulk ureilite δ15N, Δ17O, and %Fo clearly suggest that the occurrence of diamond in ureilites is not a consequence of parent body-related process. The large differences between the δ15N of diamond and other C phases among ureilites do not favor in situ shock conversion of graphite or amorphous C into diamond. A nebular origin for diamond as well as the other C phases is most favored by these data. Also the preservation of the nitrogen isotopic heterogeneity among the carbon phases and the silicates will be more consistent with ureilite formation models akin to “nebular sedimentation” than to “magmatic” type.  相似文献   

14.
At Lucky Strike near the Azores Triple Junction, the seafloor setting of the hydrothermal field in a caldera system with abundant low-permeability layers of cemented breccia, provides a unique opportunity to study the influence of subsurface geological conditions on the hydrothermal fluid evolution. Coupled analyses of S isotopes performed in conjunction with Se and Fe isotopes have been applied for the first time to the study of seafloor hydrothermal systems. These data provide a tool for resolving the different abiotic and potential biotic near-surface hydrothermal reactions. The δ34S (between 1.5‰ and 4.6‰) and Se values (between 213 and 1640 ppm) of chalcopyrite suggest a high temperature end-member hydrothermal fluid with a dual source of sulfur: sulfur that was leached from basaltic rocks, and sulfur derived from the reduction of seawater sulfate. In contrast, pyrite and marcasite generally have lower δ34S within the range of magmatic values (0 ± 1‰) and are characterized by low concentrations of Se (<50 ppm). For 82Se/76Se ratios, the δ82Se values range from basaltic values of near −1.5‰ to −7‰. The large range and highly negative values of hydrothermal deposits observed cannot be explained by simple mixing between Se leached from igneous rock and Se derived from seawater. We interpret the Se isotope signature to be a result of leaching and mixing of a fractionated Se source located beneath hydrothermal chimneys in the hydrothermal fluid. At Lucky Strike we consider two sources for S and Se: (1) the “end-member” hydrothermal fluid with basaltic Se isotopic values (−1.5‰) and typical S isotope hydrothermal values of 1.5‰; (2) a fractionated source hosted in subsurface environment with negative δ34S values, probably from bacterial reduction of seawater sulfate and negative δ82Se values possibly derived from inorganic reduction of Se oxyanions. Fluid trapped in the subsurface environment is conductively cooled and has restricted mixing and provide favorable conditions for subsurface microbial activity which is potentially recorded by S isotopes. Fe isotope systematic reveals that Se-rich high temperature samples have δ57Fe values close to basaltic values (∼0‰) whereas Se-depleted samples precipitated at medium to low temperature are systematically lighter (δ57Fe values between −1 to −3‰). An important implication of our finding is that light Fe isotope composition down to −3.2‰ may be explained entirely by abiotic fractionation, in which a reservoir effect during sulfide precipitation was able to produce highly fractionated compositions.  相似文献   

15.
Iron isotope compositions in marine pore fluids and sedimentary solid phases were measured at two sites along the California continental margin, where isotope compositions range from δ56Fe = −3.0‰ to +0.4‰. At one site near Monterey Canyon off central California, organic matter oxidation likely proceeds through a number of diagenetic pathways that include significant dissimilatory iron reduction (DIR) and bacterial sulfate reduction, whereas at our other site in the Santa Barbara basin DIR appears to be comparatively small, and production of sulfides (FeS and pyrite) was extensive. The largest range in Fe isotope compositions is observed for Fe(II)aq in porewaters, which generally have the lowest δ56Fe values (minimum: −3.0‰) near the sediment surface, and increase with burial depth. δ56Fe values for FeS inferred from HCl extractions vary between ∼−0.4‰ and +0.4‰, but pyrite is similar at both stations, where an average δ56Fe value of −0.8 ± 0.2‰ was measured. We interpret variations in dissolved Fe isotope compositions to be best explained by open-system behavior that involves extensive recycling of Feflux. This study is the first to examine Fe isotope variations in modern marine sediments, and the results show that Fe isotopes in the various reactive Fe pools undergo isotopic fractionation during early diagenesis. Importantly, processes dominated by sulfide formation produce high-δ56Fe values for porewaters, whereas the opposite occurs when Fe(III)-oxides are present and DIR is a major pathway of organic carbon respiration. Because shelf pore fluids may carry a negative δ56Fe signature it is possible that the Fe isotope composition of ocean water reflects a significant contribution of shelf-derived iron to the open ocean. Such a signature would be an important means for tracing iron sources to the ocean and water mass circulation.  相似文献   

16.
Silicon (Si) isotope variability in Precambrian chert deposits is significant, but proposed explanations for the observed heterogeneity are incomplete in terms of silica provenance and fractionation mechanisms involved. To address these issues we investigated Si isotope systematics, in conjunction with geochemical and mineralogical data, in three well-characterised and approximately contemporaneous, ∼3.5 Ga chert units from the Pilbara greenstone terrane (Western Australia).We show that Si isotope variation in these cherts is large (−2.4‰ to +1.3‰) and was induced by near-surface processes that were controlled by ambient conditions. Cherts that formed by chemical precipitation of silica show the largest spread in δ30Si (−2.4‰ to +0.6‰) and are characterised by positive Eu, La and Y anomalies and overall depletions in lithophile trace elements. Silicon isotope systematics in these orthochemical deposits are explained by (1) mixing between hydrothermal fluids and seawater, and/or (2) fractionation of hydrothermal fluids by subsurface losses of silica due to conductive cooling. Rayleigh-type fractionation of hydrothermal fluids was largely controlled by temperature differences between these fluids and seawater. Lamina-scale Si isotope heterogeneity within individual chemical chert samples up to 2.2‰ is considered to reflect the dynamic nature of hydrothermal activity. Silicified volcanogenic sediments lack diagnostic REE+Y anomalies, are enriched in lithophile elements, and exhibit a much more restricted range of positive δ30Si (+0.1‰ to +1.1‰), which points to seawater as the dominant source of silica.The proposed model for Si isotope variability in the Early Archaean implies that chemical cherts with the most negative δ30Si formed from pristine hydrothermal fluids, whereas silicified or chemical sediments with positive δ30Si are closest to pure seawater deposits. Taking the most positive value found in this study (+1.3‰), and assuming that the Si isotope composition of seawater is governed by input of fractionated hydrothermal fluids, we infer that the temperature of ∼3.5 Ga seawater was below ∼55 °C.  相似文献   

17.
Crystallization of anatectic melts in high-temperature metamorphic terrains releases volatile-rich magmas that can be transported into adjacent lithologies. This study addresses the variations in the oxygen, boron and hydrogen isotopic composition of aplite-pegmatite dikes that formed during the crystallization of anatectic melts in regional high-temperature metamorphism on the island of Naxos, Greece, and propagated upward into the overlying sequences of metamorphic schist. The transport distance of these dikes was increased through a significant horizontal component of travel that was imposed by contemporaneous low-angle extensional shearing. Laser fluorination oxygen isotope analyses of quartz, tourmaline, garnet, and biotite mineral separates from the aplite-pegmatite dikes show a progressive rise in δ18O values with increasing distance from the core. Oxygen isotope fractionations among quartz, tourmaline, and garnet show temperature variations from > 700°C down to ∼400°C. This range is considered to reflect isotopic fractionation beginning with crystallization at high temperatures in water-undersaturated conditions and then evolving through lower temperature crystallization and retrograde sub-solidus exchange. Two processes are examined for the cause of the progressive increase in δ18O values: (1) heterogeneous δ18O sources and (2) fluid-rock exchange between the aplite/pegmatite magmas and their host rock. Although the former process cannot be ruled out, there is as yet no evidence in the exposed sequences on Naxos for the presence of a suitable high δ18O magma source. In contrast, a tendency for the δ18O of quartz in the aplite/pegmatite dikes to approach that of the quartz in the metamorphic rock suggests that fluid-rock exchange with the host rock may potentially be an important process. Advection of fluid into the magma is examined based on Darcian fluid flow into an initially water-undersaturated buoyantly propagating aplitic dike magma. It is shown that such advective flow could only account for part of the 18O-enrichment, unless it were amplified by repeated injection of magma pulses, fluid recycling, and deformation-assisted post-crystallization exchange. The mechanism is, however, adequate to account for hydrogen isotope equilibration between dike and host rock. In contrast, variations in the δ11B values of tourmalines suggest that 11B/10B fractionation during crystallization and/or magma degassing was the major control of boron geochemistry rather than fluid-rock interaction and that the boron isotopic system was decoupled from that of oxygen.  相似文献   

18.
The distribution of He and Ar isotopes has been studied in 41 rock samples and seven monomineralic fractions from ore-bearing layered units and poorly differentiated host gabbronorite of the Western Pana mafic–ultramafic pluton on the Kola Peninsula. The gases assigned for mass-spectrometric analysis were released by means of whole-rock sample melting and by comminution mainly from fluid microinclusions. The data show that the present-day isotopic composition of noble gases in rocks from the pluton is caused by many factors: the degree of melt degassing, various concentrations and retention of the trapped isotopes, the contents of radioactive elements, and the generation and loss of radiogenic gases. The hypabyssal conditions of pluton formation facilitate the loss of primary mantle-derived volatile components and the dilution of magmatic fluid with near-surface paleometeoric waters containing air dissolved therein. The correlation of noble gas isotopes and ore-forming chemical elements does not suggest derivation of the latter from crustal material and evidences their mantle origin. Variations in the geochemical indices of the gas corroborate previously established or proposed multistage formation of the pluton, mainly, the autometamorphic character of postmagmatic processes and the participation of fluids in ore formation.  相似文献   

19.
Os isotope ratios in pyrrhotite-bearing pelitic rocks of the ∼1.85 Ga Virginia Formation are variable, with perturbations linked to the emplacement of the ∼1.1 Ga Duluth Complex. Pyrrhotite in footwall rocks of the contact aureole show evidence for a mixing event at 1.1 Ga involving a low 187Os/188Os fluid. However, because rocks with perturbed pyrrhotite Os isotope ratios occur 1½ km or more from the Duluth Complex, the fluid is unlikely to have been of magmatic origin. Fluid inclusions in layer-parallel quartz veins provide evidence of the involvement of a boiling fluid at temperatures between ∼300 and 400 °C. Analyses of fluid inclusions via LA-ICP-MS show that the fluids contain up to 1.7 wt% Na, 1.1 wt% K, 4330 ppm Fe, 2275 ppm Zn, and 415 ppm Mg. The veins also contain pyrite or pyrrhotite, plus minor amounts of chalcopyrite, bornite, pentlandite, and sphalerite. The Re-Os isotopic ratios of pyrite from the veins indicate that they crystallized from low 187Os/188Os fluids (<0.2). δ18O values of vein quartz range from 7.7‰ to 9.5‰, consistent with an origin involving fluid with a relatively low δ18O value between 2‰ and 5‰. Meteoric water with such a low δ18O value could have interacted with the igneous rocks of the Complex and would have acquired Os with a low 187Os/188Os ratio. Strongly serpentinized olivine-rich rocks of the Complex are commonly characterized by such low δ18O values and we propose that the fluid involved in serpentinization was also responsible for the perturbation of the Os isotopic system recorded by pyrrhotite in the Virginia Formation. Two important observations are that only pyrrhotite-bearing assemblages in the contact aureole show isotopic perturbation and that intervals showing Os exchange are spatially restricted, and not uniformly distributed. Os exchange and mixing has occurred only where temperatures were sufficient to convert pyrite to pyrrhotite, and where time-integrated water-rock ratios in the aureole were high enough to provide a supply of Os.Troctolitic and gabbroic rocks of the Partridge River Intrusion, Duluth Complex, are characterized by Os isotope ratios that are indicative of variable degrees of crustal contamination (γOs values of ∼0-543). Xenoliths of carbonaceous and sulfidic pelitic rocks of the Virginia Formation found in the igneous rocks provide evidence that Os was released by organic matter and pyrite in the sedimentary rocks and assimilated by mantle-derived magma. However, residual pyrrhotite produced as a result of pyrite breakdown in the xenoliths is characterized by 187Os/188Os ratios that are much lower than anticipated and similar to those of pyrrhotite in the contact aureole. The Os exchange and addition shown by pyrrhotite in the xenoliths highlight an unusual cycle of Re-Os liberation during devolatilization, kerogen maturation, and pyrite to pyrrhotite conversion (processes that contribute to magma contamination), followed by Os uptake by pyrrhotite during back reaction involving magma and/or fluid characterized by a relatively low 187Os/188Os ratio. The extreme Os uptake recorded by pyrrhotite in the xenoliths, as well as the lesser degree of uptake recorded by pyrrhotite in the contact aureole, is in line with the high Os diffusivity in pyrrhotite experimentally determined by Brenan et al. (2000). Our data confirm that Os isotope ratios in pyrrhotite-bearing rocks may be readily perturbed. For this reason caution should be exercised in the interpretation of Os isotope ratios in rocks where pyrrhotite may be the primary host of Os.  相似文献   

20.
The Reykjanes geothermal system is located on the landward extension of the Mid-Atlantic Ridge in southwest Iceland, and provides an on-land proxy to high-temperature hydrothermal systems of oceanic spreading centers. Previous studies of elemental composition and salinity have shown that Reykjanes geothermal fluids are likely hydrothermally modified seawater. However, δD values of these fluids are as low as −23‰, which is indicative of a meteoric water component. Here we constrain the origin of Reykjanes hydrothermal solutions by analysis of hydrogen and oxygen isotope compositions of hydrothermal epidote from geothermal drillholes at depths between 1 and 3 km. δDEPIDOTE values from wells RN-8, -9, -10 and -17 collectively range from −60 to −78‰, and δ18OEPIDOTE in these wells are between −3.0 and 2.3‰. The δD values of epidote generally increase along a NE trend through the geothermal field, whereas δ18O values generally decrease, suggesting a southwest to northeast migration of the geothermal upflow zone with time that is consistent with present-day temperatures and observed hydrothermal mineral zones. For comparative analysis, the meteoric-water dominated Nesjavellir and Krafla geothermal systems, which have a δDFLUID of ∼ −79‰ and −89‰, respectively, show δDEPIDOTE values of −115‰ and −125‰. In contrast, δDEPIDOTE from the mixed meteoric-seawater Svartsengi geothermal system is −68‰; comparable to δDEPIDOTE from well RN-10 at Reykjanes.Stable isotope compositions of geothermal fluids in isotopic equilibrium with the epidotes at Reykjanes are computed using published temperature dependent hydrogen and oxygen isotope fractionation curves for epidote-water, measured isotope composition of the epidotes and temperatures approximated from the boiling point curve with depth. Calculated δD and δ18O of geothermal fluids are less than 0‰, suggesting that fluids of meteoric or glacial origin are a significant component of the geothermal solutions. Additionally, δDFLUID values in equilibrium with geothermal epidote are lower than those of modern-day fluids, whereas calculated δ18OFLUID values are within range of the observed fluid isotope composition. We propose that modern δDEPIDOTE and δDFLUID values are the result of diffusional exchange between hydrous alteration minerals that precipitated from glacially-derived fluids early in the evolution of the Reykjanes system and modern seawater-derived geothermal fluids. A simplified model of isotope exchange in the Reykjanes geothermal system, in which the average starting δDROCK value is −125‰ and the water to rock mass ratio is 0.25, predicts a δDFLUID composition within 1‰ of average measured values. This model resolves the discrepancy between fluid salinity and isotope composition of Reykjanes geothermal fluids, explains the observed disequilibrium between modern fluids and hydrothermal epidote, and suggests that rock-fluid interaction is the dominant control over the evolution of fluid isotope composition in the hydrothermal system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号