首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nitrogen doping is a promising method for the preparation of functional carbon materials. In this study, a nitrogen-doped porous coral biochar was prepared by using bamboo as raw material, urea as nitrogen source, and KHCO3 as green activator through in-situ pyrolysis. The structure of the obtained biochar was characterized by various techniques including nitrogen adsorption and desorption, Raman spectroscopy, X-ray photoelectron spectrometer, and etc. The adsorption properties of nitrogen-doped biochar were evaluated with phenol and methylene blue probes. The results showed that the nitrogen source ratio had a significant effect on the evolution of pore structure of biochar. Low urea addition ratio was beneficial to the development of pore structures. The optimum specific surface area of nitrogen-doped biochar could be up to 1693 m2·g−1. Nitrogen doping can effectively improve the adsorption capacity of biochar to phenol and methylene blue. Biochar prepared at 973.15 K with low urea addition ratio exhibited the highest adsorption capacity for phenol and methylene blue, and the equilibrium adsorption capacity was 169.0 mg·g−1 and 499.3 mg·g−1, respectively. By comparing the adsorption capacity of various adsorbents in related fields, it is proved that the nitrogen-doped biochar prepared in this study has a good adsorption effect.  相似文献   

2.
MXenes have attracted increasing research enthusiasm owing to their unique physical and chemical properties. Although MXenes exhibit exciting potential in cations adsorption due to their unique surface groups, the adsorption capacity is limited by the low specific surface area and undeveloped porosity. Our work aims at enhancing the adsorption performance of a well-known MXene, Ti3C2Tx, for methylene blue (MB) by decorating tiny ZIF-8 nanoparticles in the interlayer. After the incorporation of ZIF-8, suitable interspace in the layers resulting from the distribution of tiny ZIF-8 appears. When employing in MB, the adsorption capacity of composites can reach up to 107 mg·g-1 while both ZIF-8 (3 mg·g-1) and Ti3C2Tx (9 mg·g-1) show nearly no adsorption capacity. The adsorption mechanism was explored, and the good adsorption capacity is caused by the synergistic effect of ZIF-8 and Ti3C2Tx, for neither of them is of suitable interspace or surface groups for MB adsorption. Our work might pave the way for constructing functional materials based on the introduction of nanoparticles into layered materials for various adsorption applications.  相似文献   

3.
This research demonstrates the production of mesoporous activated carbon from sargassum fusiforme via physical activation with carbon dioxide. Central composite design was applied to conduct the experiments at different levels by altering three operating parameters. Activation temperature(766–934 ℃), CO_2 flow rate(0.8–2.8 L·min(~-1)) and activation time(5–55 min) were the variables examined in this study. The effect of parameters on the specific surface area, total pore volume and burn-out rate of activated carbon was studied,and the influential parameters of methylene blue adsorption value were identified employing analysis of variance. The optimum conditions for maximum methylene blue adsorption value were: activation temperature = 900 ℃, activation time = 29.05 min and CO_2 flow rate = 1.8 L·min(~-1). The activated carbon produced under optimum conditions was characterized by BET, FTIR and SEM. The adsorption behavior on congo red was studied. The effect of parameters on the adsorbent dosage, temperature, PH and initial congo red concentration was investigated. The adsorption properties of the activated carbon were investigated by kinetics. The equilibrium removal rate and maximum adsorption capacity reaches up to 94.72%, 234 mg·g-1,respectively when initial congo red concentration is 200 mg·L~(-1) under adsorbent dosage(0.8 g · L~(-1)),temperature(30℃), PH7.  相似文献   

4.
A spray-drying assisted solid-state method to prepare spherical layer-structured H2TiO3 ion sieve (LSTIS) particles is reported herein. The effects of synthesis parameters (calcination temperature, calcination time, and the lithium-titanium molar ratio) on adsorption–desorption performance (the delithiation ratio, titanium dissolution loss, and the adsorption capacity) were investigated. The as-prepared LSTIS exhibited an equilibrium adsorption capacity of 30.08 mg·g-1 (average of 25.85 mg·g-1 over 5 cycles) and ultra-low titanium dissolution loss of less than 0.12% (average of 0.086% over 5 cycles). The LSTIS showed excellent selectivity toward Li+ in Na+, K+, Mg2+, and Ca2+ coexisting saline solutions where its adsorption capacity reached 27.45 mg·g-1 and the separation factors of Li+ over the coexisting cations exceeded 100. The data suggests that the LSTIS is promising to competitively enrich Li+ from saline solutions.  相似文献   

5.
In this paper, we propose that the urinary toxins from the wastewater be adsorbed on an adsorbent such as spherical activated carbon and the latter be regenerated by subjecting it to high temperatures to recycle activated carbon and also to recycle the water used in dialysis. We studied the adsorption of artificial waste dialysate, which is a mixed solution of urea, creatinine, and uric acid, and the separate solutions for each of these and found that their extents of adsorption onto the spherical activated carbon material were nearly identical. The amount of adsorption was approximately 1.4 mg·g-1 for urea, 18 mg·g-1 for creatinine, and 20 mg·g-1 for uric acid. The urea, creatinine, and uric acid adsorbed onto the spherical activated carbon decomposed on heat treatment at 500℃, and the adsorption capacity of the spherical activated carbon was regenerated. Our study successfully demonstrated that the spherical activated carbon can be recycled in the waste dialysate treatment process.  相似文献   

6.
Malaysian Selantik low-rank coal (SC) was used as a precursor to prepare a form of mesoporous activated carbon (SC-AC) with greater surface area (SA) via a microwave induced KOH-activation method. The characteristics of the SC and SC-AC were evaluated by the iodine number, ash content, bulk density, and moisture content. The structure and surface characterization was carried out using pore structure analysis (BET), scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX), X-ray diffraction (XRD), Fourier Transform Infrared (FTIR), elemental analysis (CHNS), thermogravimetric analysis (TGA), and determination of the point of zero charge (pHPZC). These results signify a mesoporous structure of SC-AC with an increase of ca. 1160 times (BET SA=1094.3 m2·g-1) as compared with raw SC without activation (BET SA=1.23 m2·g-1). The adsorptive properties of the SC-AC with methylene blue (MB) was carried out at variable adsorbent dose (0.2-1.6 g·L-1), solution pH (2-12), initial MB concentrations (25-400 mg·L-1), and contact time (0-290 min) using batch mode operation. The kinetic profiles follow pseudo-second order kinetics and the equilibrium uptake of MB conforms to the Langmuir model with a maximum monolayer adsorption capacity of 491.7 mg·g-1 at 303 K. Thermodynamic functions revealed a spontaneous endothermic adsorption process. The mechanism of adsorption included mainly electrostatic attractions, hydrogen bonding interaction, and π-π stacking interaction. This work shows that Malaysian Selantik low-rank coal is a promising precursor for the production of low-cost and efficient mesoporous activated carbon with substantive surface area.  相似文献   

7.
Trace zeolitic imidazolate framework-8(ZIF-8)-decorated activated carbon(AC) pellets were synthesized by a facile wet impregnation technique. After pyrolysis of the above composite material, the obtained carbon had a large surface area and pore volume, with traces of Zn on its surface. Subsequently, the capacity of the ZIF8/AC samples to adsorb and remove phenol from aqueous media was evaluated in both batch and column experimental setups. The equilibrium adsorption capacity reached 155.24 mg·g~(-1), which was 2.3 times greater than that of the pure AC(46.24 mg·g~(-1)). In addition, adsorption kinetics were examined by pseudofirst and pseudosecond order models, and adsorption isotherms were fitted into Langmuir and Freundlich equations. The adsorbent could be easily filtered from the solution and washed with methanol and water, while maintaining an efficiency N 90% after 4 cycles. The above results make it a potentially reusable candidate for water purification.  相似文献   

8.
干法制备高中孔率生物质成型活性炭   总被引:2,自引:0,他引:2       下载免费PDF全文
以锯末为原料,氯化锌为活化剂,不添加黏结剂,采用干法混合后直接成型活化制备高中孔率生物质成型活性炭。为考察这种工艺的可行性,通过单因素实验,以亚甲基蓝吸附值为评价指标,考察了盐料比、活化温度、活化时间与成型密度对生物质成型活性炭吸附性能的影响,得出较优工艺条件为:盐料比1.0:1,活化温度950℃,活化时间为60min,成型密度为1.4g·cm-3。在此工艺条件下制备得到的生物质成型活性炭,其亚甲基蓝吸附值为387mg·g-1,BET比表面积为2104m2·g-1,平均孔径为3.11nm,总孔容为1.63cm3·g-1,中孔孔容为1.17cm3·g-1,中孔率高达71.8%,初步证明了干法制备高中孔率生物质成型活性炭工艺的可行性。  相似文献   

9.
The carbonaceous adsorbent was prepared from mixtures of dewatered sludge and sawdust with enhanced ZnCl2 chemical activation.Characteristics of the adsorbent were studied using scanning electron microscope(SEM) ,Fourier transform infrared spectroscopy(FT-IR) ,and adsorption of nitrogen.The surface analysis showed that the carbonaceous adsorbent had good specific surface and porosity(394 m 2 ·g-1of BET surface,0.12 and 0.10 ml·g-1of microporous and mesoporous volume,respectively) .The oxygen functional groups such as OH,C O and C O were found on the surface by FTIR and XPS(X-ray photoelectron spectroscopy) .The adsorption of elemental mercury(Hg0) on the carbonaceous adsorbent was studied in a fixed bed reactor.The dynamic adsorption capacity of carbonaceous adsorbent increased with influent mercury concentration,from 23.6μg·g-1at 12.58μg·m-3to 87.9μg·g-1at 72.50μg·m-3,and decreased as the adsorption temperature increased,from 246 μg·g-1 at 25°C to 61.3μg·g-1 at 140°C,when dry nitrogen was used as the carrier gas.The carbonaceous adsorbent presented higher dynamic adsorption capacity than activated carbon,which was 81.2μg·g-1and 53.8μg·g-1respectively.The adsorption data were fitted to the Langmuir adsorption model.The physical and chemical adsorption were identified on the adsorbent.  相似文献   

10.
A nitrogen and sulfur co-doped carbon has been synthesized employing egg white as a sustainable protein-rich precursor. According to CHNS elemental analysis, N, S and O heteroatoms accounted for mass fractions of 3.66%, 2.28% and 19.29% respectively, and the types of surface functionalities were further characterized by FT-IR and XPS measurements. Although the carbon possessed a smaller surface area (815 m2·g-1) compared to a commercial activated carbon (1100 m2·g-1), its adsorption capacity towards Co2+ reached 320.3 mg·g-1, which was over 8 times higher compared to the limited 34.0 mg·g-1 over the activate carbon. Furthermore, the carbon was found to be an efficient adsorbent towards a series of metal ions including VO2+, Cr3+, Ni2+, Cu2+ and Cd2+. Combined with its environmental merits, the protein derived carbon may be a promising candidate for heavy metal pollution control.  相似文献   

11.
A new nanometer material, nanometer AlO(OH) loaded on the fiberglass with activated carbon fibers felt(ACF) as the carrier, was prepared by hydrolytic reaction for the removal of Cd(II) from aqueous solution using column adsorption experiment. As was confirmed by XRD determination, the hydrolysis production loaded on fiberglass was similar to the orthorhombic phase AlO(OH). SEM images showed that AlO(OH) particles were in the form of small aggregated clusters. The Thomas model was applied for estimating the kinetic parameters and the saturated adsorption ability of Cd(II) adsorption on the new adsorbent. The results showed that the maximum adsorption capacity of Cd(II) was 128.50 mg·g^-1 and 117.86 mg·g^-1 for the adsorbent mass of 0.3289 g and the adsorbent mass of 0.2867 g, respectively. The elution experiment result indicated that the adsorbed Cd ions was easily desorbed from the material with 0.1 mol·L^-1 HCl solution. Adsorption-desorption cycles showed the feasibility of repealed uses of the composited material. The adsorption capacities were influenced by pH and the initial Cd(II) concentration. The amount adsorbed was greatest at pH 6.5 and the initial Cd(II) concentration of 0.07 mg·L^-1, respectively. Nanometer AlO(OH) played a major role in the adsorption process, whereas the fiberglass and ACF were assistants in the process of removing Cd(II). In addition, the adsorption capacities for Cd(II) were obviously reduced from 128.50 mg·L^-1 to 64.28 mg·L^-1 when Pb ions were present because Pb ions took up more adsorption sites.  相似文献   

12.
In this work we investigated the effect of nitric acid concentration on the pore structure, surface chemistry and liquid phase adsorption of olive stone based activated carbon prepared by mixing process using phosphoric acid and steam as activating agents. Chemicals and textural characterization show that the increase of HNO3 concentration increases considerably the total acidic groups but decreases specific surface area and pore volume. The study of adsorption in aqueous solutions of two organics, phenol and methylene blue, on raw and oxidized activated carbon indicates that the treatment of mixed activated carbon with different concentrations of nitric acid improves the adsorbent capacity for methylene blue at HNO3 concentrations less or equal to 2 mol·L 1, while it has a negative effect on phenol adsorption.  相似文献   

13.
Mineral matter in a residue(RC G) from coal gasification(CG) was removed by two-stage acid leaching. Hierarchical activated carbon(HAC) was prepared by activating RC Gwith CO_2. The performance of HAC on removing methylene blue(MB) from an aqueous solution was investigated. HAC was characterized by N_2 adsorption–desorption isotherm, Fourier transform infrared spectroscopy, and scanning electron microscopy. The results show that HAC exhibits hierarchical pore structure with high specific surface area(862.76 m~2·g~(-1)) and total pore volume(0.684 cm~3·g~(-1)), and abundant organic functional groups. The adsorption equilibrium data of MB on HAC are best fitted to the Redlich-Peterson. The kinetic data show that the pseudo-first-order model is more suitable at low MB concentration, while the advantages of the pseudo-second-orderand the Elovich models are more obvious as the concentration increases. According to the thermodynamic parameters, the HAC-MB adsorption process is spontaneous and endothermic.  相似文献   

14.
Zeolites Y, A and mordenite (ZY, ZA and ZM) were obtained from diatomite in a template-free system, and the products were modified by thiourea (TU). Characterization studies results indicated that the TU molecules were loaded onto the exterior surfaces of the synthetic zeolites as well as the channels. Elemental analysis and energy-dispersive X-ray spectrometer proved that the TU molecules loaded on to ZA were more than ZY and ZM. Removal of Cd(II) was investigated, and it was found that the modified zeolites have higher removal capacity, modified ZA is especially noticeable. In the adsorption experiments, the effects of various parameters such as sorbent content, contact time, concentration of cadmium solution, pH, selectivity and regeneration were discussed. At the best removal efficiency by modified zeolites, the maximum adsorption capacity is 94.3 mg·g-1, 103.2 mg·g-1 and 89.7 mg·g-1 at 25℃, respectively. The sorbents show good efficiency for the removal of Cd(II) in the presence of different multivalent cations and have good regeneration effect. For the modified samples, removal experiments take place via ion exchange and complexation processes.  相似文献   

15.
熊道陵  许光辉  张团结  陈金洲  陈超 《化工进展》2015,34(12):4280-4284
以油茶壳醇浸取后残渣为原料,以磷酸活化法制备活性炭,考察了浸渍比、磷酸质量分数和活化温度等对活性炭吸附性能及其得率的影响;活性炭的吸附性能由碘吸附值、亚甲基蓝吸附值表征。结果表明,在酸/炭浸渍比为3:1、磷酸质量分数70%、活化温度500℃时,活性炭的吸附性能最佳,其碘、亚甲基蓝吸附值和得率分别为1043.29mg/g、148.5mg/g和38.77%。采用物理吸附仪在77K下测定其N2吸附脱附等温线,利用BET法和BJH法计算比表面积和孔径分布,其比表面积为1626.45m2/g,平均孔径为4.7nm,总孔容为1.94cm3/g。同时采用FTIR和XRD分析了活性炭的表面官能团和微观结构。  相似文献   

16.
Many different techniques may be used to remove industrial pollutants from wastewater. Adsorption using activated carbon has been reported to be an effective method. This work proposes the use of a vegetable residue (black sapote seeds) as a raw material for its synthesis. These carbons were chemically activated using phosphoric acid and carbonized at 673 and 873 K. Adsorption isotherms were constructed for the textile dyes on the carbons, and this data was treated using Langmuir's equation to quantitatively describe the adsorption process. The synthesized carbons were characterized using FTIR, EA, SEM, Nitrogen adsorption (specific surface areas of 879 and 652 m2·g-1), and their points of zero charge (2.1 and 2.3). It was possible to adsorb both heavy metals and textile dyes present in aqueous solutions and wastewaters using these activated carbons. Heavy metals were adsorbed almost completely by both carbons. Cationic dyes where adsorbed (58-59.8 mg·g-1) in greater amounts compared to anionic dyes (10-58.8 mg·g-1). The amount of anionic dyes adsorbed increased almost 30% by changing the pH of the solutions. One of the carbons was thermally regenerated on three occasions without losing its adsorption capacity and it was proved in a flow system.  相似文献   

17.
In the present paper, a metal–organic framework Cr-BDC was prepared and used as adsorbent for adsorption of o-nitrophenol(ONP) and p-nitrophenol(PNP) from aqueous solutions. Cr-BDC was characterized by scanning electron microscopy, transmission electron microscope, X-ray diffraction and BET methods. The results indicate that Cr-BDC gets a very large specific surface area of 4128 m~2·g~(-1)and pore sizes are concentrated in 1 nm, which is a benefit for using for wastewater treatment. The influences of the adsorption conditions, such as temperature,solution concentration, adsorption time and reusability on adsorption performance were investigated. Cr-BDC exhibited an encouraging uptake capacity of 310.0 mg·g~(-1)for ONP, and adsorption capacity of Cr-BDC for ONP is significantly higher than that for PNP under suitable adsorption conditions. The characterizations of adsorption process were examined with the Lagergren pseudo-first-order, the pseudo-second-order kinetic model, and the intra-particular diffusion model. Kinetics experiments indicated that the pseudo-second-order model displayed the best correlation with adsorption kinetics data. Furthermore, our adsorption equilibrium data could be better described by the Freundlich equation. The results indicate that the as-prepared Cr-BDC is promising for use as an effective and economical adsorbent for ONP removal.  相似文献   

18.
以壳寡糖(COS)为碳前驱体,三嵌段共聚物(F127)和正硅酸乙酯(TEOs)为模板剂,通过溶胶-凝胶法制备了一种用于超级电容器的原位氮掺杂介孔碳材料(COS-NMC-x)。借助质谱仪、TG-DTG、XRD、Raman光谱、N2吸附/脱附、XPS、FT-IR、亲水性以及电化学评价等手段对材料进行了表征,以研究材料的物化性质和电化学性能。结果表明,COS-NMC-x材料的比表面积、孔容、氮原子数分数随超声时间的增加呈先增后减的趋势,当超声时间为15 min时,样品的比表面积、孔容、氮原子数分数到最大,接触角最小,分别为144.94 m2·g-1、0.19 cm3·g-1、7.59%和23.16°。同时对COS-NMC-x进行了电化学性能评价,在电流密度为0.5 A·g-1时,样品的比电容为189 F·g-1,远高于同组其他材料,说明较大的孔隙结构和氮原子数分数等有利于材料的电化学性能提升。在10 A·g-1下经过5 000次循环之后,该材料的电容保持率达到114%,表现出良好的电化学性能,在超级电容器应用方面展现出巨大的应用潜力。  相似文献   

19.
以硫酸盐造纸黑液木质素为原料,分别采用磷酸活化和磷酸、硫酸混合酸活化制备了两类不同结构的木质素活性炭,对其进行了扫描电镜(SEM)、红外光谱(FTIR)、氮气吸附脱附、元素分析和Boehm酸值滴定等表征分析,并将制备的活性炭应用于模拟亚甲基蓝(MB)染料废水的吸附。结果表明,混合酸活化制备的木质素活性炭比单独磷酸活化的木质素活性炭的比表面积、总孔体积、介孔体积、氧含量分别增加了27.9%、26.4%、29.3%和29.2%,并且孔径分布更趋集中。混合酸活化活性炭在pH为2~9的范围内对亚甲基蓝均有优异的吸附性能,最大饱和吸附量达到1118.90 mg·g-1,比磷酸活化木质素活性炭的吸附量增加了20.3%,表现出良好的吸附性能。吸附速率快,吸附过程遵循Langmuir等温线和伪二级动力学方程,颗粒内扩散不是唯一的决速步骤。  相似文献   

20.
Polyethyleneimine (PEI) modified palygorskite (Pal) was used for the adsorption of Cr(VI) in aqueous solution. The absorbent was characterized by Fourier transform infrared spectroscopy (FT-IR) and thermogravimetric analysis (TGA). Characterized results confirmed that the Pal has been successfully modified by PEI. The modification of PEI increased the Cr(VI) adsorption performance of the Pal by the adsorption combined reduction mechanism, and amino groups of the adsorbent play the main role in the enhanced Cr(VI) adsorption. The maximum adsorption capacity was 51.10 mg·g-1 at pH 4.0 and 25 ℃. The adsorption kinetics of Cr(VI) on the adsorbent conforms to the Langmuir isotherm model. The maximum adsorption occurs at pH 3, and then the adsorption capacity of PEI-Pal was decreased with the increase of pH values. The adsorption kinetics of Cr(VI) on PEI-Pal was modeled with pseudo-second-order model. The addition of Cl-, SO42- and PO43- reduced the Cr(VI) adsorption by competition with Cr(VI) for the active sites of PEI-Pal. The Cr(VI) saturated PEI-Pal can be regenerated in alkaline solution, and the adsorption capacity can still be maintained at 30.44 mg·g-1 after 4 cycles. The results demonstrate that PEI-Pal can be used as a potential adsorbent of Cr(VI) in aqueous solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号