首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
磁流体黏度可随外部磁场强度发生变化,故可将其作为非接触式机械密封端面的润滑介质,通过改变外部磁场强度来实现磁流体膜动压性能的控制。为提高磁流体动压机械密封的密封性能,设计一种磁场发生器,该磁场发生器可通过改变电流来调节磁流体膜的黏度,从而产生不同的动压,实现对流体膜动压效应的控制。采用数值分析的方法,对由动环、静环、磁流体膜及磁场发生器组成的导磁结构的磁场进行分析,获得导磁结构中磁力线、磁场强度、磁感应强度分布规律。研究发现,导磁结构中的磁力线几乎全部穿过密封环端面,该处的磁场强度达到最高水平;磁力线在垂直于密封端面方向上有一定的磁场梯度,且磁流体膜中的磁场强度与磁场发生器的电流强度成正比。  相似文献   

2.
以非接触式机械密封为原型,建立磁流体端面动压润滑试验装置,研究转速、被密封介质压力、磁场强度对液膜润滑特性的规律;同时基于Muijderman窄槽理论,建立磁流体动压润滑特性的解析计算方法,并将解析计算结果与试验结果进行对比分析。结果表明:随转速和被密封介质压力增大,摩擦扭矩、泵送量均增大,而膜厚均减小;随着磁场强度增大,摩擦扭矩增大,泵送量和膜厚减小;相比于转速和密封介质压力,磁场强度对磁流体的动压润滑性能的影响尤为显著,因而当工况变化时可以通过调节磁场强度使密封性能始终保持在最佳工作范围。解析计算方法得到的结果与试验结果基本趋势一致,即验证了试验方法的可靠性,也表明提出的解析计算方法可用于流体动压润滑性能的预测。  相似文献   

3.
根据磁流体黏度随磁场强度变化的特点,以磁流体为润滑介质,提出一种非接触式磁流体密封结构。设计适用于非接触式机械密封的电磁场发生器,并采用ANSYS软件对密封环及润滑膜整体结构的磁场强度进行分析,得到磁感线分布和磁场强度分布,建立电流与磁流体膜内磁场强度的关系。结果表明:设计的磁场发生器在密封环端面处产生的磁场强度达到最高水平,且磁感线垂直于密封端面均匀分布,有利于通过控制电流来控制磁流体膜的黏度。  相似文献   

4.
针对螺旋槽液体润滑非接触式机械密封(简称液膜密封)特点,根据液膜密封原理,选择液膜厚度和泵送量为被控变量,隔离液压力为操纵变量,提出基于模糊理论的机械密封控制方案。运用MATLAB软件的模糊推理系统(FIS)编辑器设计液膜密封模糊控制器,对模糊控制器的输出结果进行实验验证。结果表明,所提出控制算法是有效的,可满足对液膜密封的控制要求。  相似文献   

5.
针对螺旋槽液体润滑非接触式机械密封(简称液膜密封)特点,根据液膜密封原理,选择液膜厚度和泵送量为被控变量,隔离液压力为操纵变量,提出基于模糊理论的机械密封控制方案。运用MATLAB软件的模糊推理系统(FIS)编辑器设计液膜密封模糊控制器,对模糊控制器的输出结果进行实验验证。结果表明,所提出控制算法是有效的,可满足对液膜密封的控制要求。  相似文献   

6.
LaserFace液体润滑端面密封性能研究   总被引:2,自引:2,他引:0  
LaserFace液体润滑端面密封(LF-MS)能提供全膜润滑,密封寿命得到延长,可以应用于几乎所有清洁液体介质润滑的场合,特别适用于易汽化介质等苛刻工况。针对LF-MS,采用混合接触理论,建立了其二维数学分析模型,通过液膜压力分布和液膜速度场的分析揭示了LF-MS的工作机理,对比分析了等深和变深动压槽LF-MS、普通平面端面密封及含矩形引流槽端面密封等4种不同端面结构机械密封的性能。结果表明:LF-MS具有端面动压效应好、摩擦系数低及液膜刚度高的优点,综合性能明显优于普通端面密封和含矩形引流槽端面密封,且与等深动压槽相比变深动压槽对提高LF-MS的密封性能作用明显。  相似文献   

7.
为了分析螺旋槽机械密封在气液两相润滑工况下的性能,采用液氮模拟涡轮泵的低黏介质润滑环境,获得了不同试验条件下液氮在两相中的比例k。引入气液时变混合因子λ,建立了λ与两相介质混合密度ρ和混合黏度μ的关系。给出了螺旋槽机械密封的气液两相量润滑计算模型,计算得到了两相润滑时机械密封的开启力F和泄漏量Q,并和试验结果进行了对比,在150~190 s时添加时变混合因子计算方法计算出的开启力和泄漏量较实测数据平均误差分别为6.71%和4.32%。结果表明:考虑两相影响的开启力和泄漏量计算值均小于不考虑两相影响的计算值,且端面液膜气化降低开启力的同时也减小了泄漏量。气液两相量润滑计算模型增加了螺旋槽机械密封性能计算的准确性,研究结果可为两相工况下的机械密封设计及性能优化提供参考。  相似文献   

8.
不同载液磁流体热弹流润滑性能对比   总被引:4,自引:0,他引:4  
建立磁流体润滑滑动轴承的弹流润滑模型.利用考虑热效应的雷诺方程,用多重网格法对磁流体润滑滑动轴承进行弹流润滑分析.比较不同载液磁流体润滑滑动轴承的润滑膜膜厚和压力分布.通过对比酯基H01磁流体、烃基E03磁流体和水基A01磁流体的润滑膜膜厚和压力,选择水基磁流体做进一步的研究,探究载荷和速度对水基磁流体润滑滑动轴承的润滑膜弹流性能的影响.结果表明:与等温条件下相比,不同载液磁流体润滑膜的压力没有变化,但是磁流体润滑膜的膜厚都减小;在不同转速条件下,水基磁流体润滑膜的入口区压力随着转速增加而增大,膜厚随着转速增加而增厚,压力峰随着转速增加而减小;在不同载荷条件下,水基磁流体润滑膜的入口区压力随着载荷增加而减小,膜厚随着载荷增加而减小,压力峰随着载荷增加而增大.  相似文献   

9.
张鹏高  魏龙  冯秀  冯飞 《润滑与密封》2024,49(3):196-202
为了研究磁流体润滑螺旋槽机械密封中的热流固耦合效应,利用ANSYS Workbench软件计算了磁流体膜的压力分布、温度分布和动环的变形量,分析了电流强度、转速和磁性颗粒体积分数对磁流体膜压力、温度和动环变形的影响。结果表明:随着电流强度、转速和磁性颗粒体积分数的升高,磁流体膜的动压、温度和密封环的热变形都增大;内径处的磁流体温度最高但压力最低,磁流体基液易汽化;动环的压力变形远小于热变形;磁流体膜的压力、磁流体膜温度的数值解大于试验值和解析值,其主要原因在于数值解考虑了密封堰和离心力对磁流体膜的影响。  相似文献   

10.
液氧动压密封性能对液氧涡轮泵的工作效率及稳定性有很大的影响,为了研究不同工况下机械密封液膜的相变和密封性能,建立端面液膜汽化相变数值计算模型,分析液膜汽化的相变程度、相变区域分布和液膜汽化相变对泵开启力和泄漏量的影响。结果表明:工况参数对液膜的汽化相变有着一定程度的影响,随着动环转速、介质压力的增加,相变被抑制且最大相变体积分数发生在压力出口处且范围逐渐减小,最大相变压力逐渐增加,开启力和泄漏量不断增大;介质温度升高会促进相变的发生,最大相变体积分数发生在压力出口处且范围逐渐增加,最大相变压力不断减小,开启力和泄漏量不断减小。液膜的汽化相变会对密封性能产生直接的影响,合理选择密封工况,可有效利用和控制相变,提高密封性能。  相似文献   

11.
介绍一种新型的非接触式轴端机械密封——差速浮动式传输密封的工作原理及密封机制,根据流体力学的基本原理和静压气体润滑理论,建立传输密封泄漏量、压力分布、摩擦转矩、端面温升、承载能力和液膜刚度的计算公式。利用MATLAB软件对传输密封的性能进行数值模拟,分析密封结构参数和动力参数对密封性能的影响。分析结果表明,端面泄漏量的重要影响因素是端面间隙、液压油的压力波动和液压油的黏度,动环转速对泄漏流量的影响很小;密封间隙中主要以混合摩擦为主,且摩擦转矩与端面压力成正比,与密封间隙近似成反比例关系;密封间隙中的液膜刚度在初始液阻比为1时取最大值,且液膜刚度与端面压力成正比,与密封间隙成反比例关系。  相似文献   

12.
张鹏高  魏龙  冯秀  冯飞 《润滑与密封》2024,49(4):1685-174
为研究磁流体润滑非接触式机械密封的磁场特性,运用Ansoft Maxwell数值模拟磁流体膜和密封环组成的密封系统的磁场强度和磁感应强度,分析磁流体膜厚和电流强度对磁场强度和磁感应强度的影响,用最小二乘法拟合磁流体膜的磁感应强度和电流强度的关系式。结果表明:磁感线在密封系统中形成了完整的“O”形回路,磁流体膜中的磁场强度最大,磁感线在磁流体膜中分布均匀,且垂直穿过磁流体膜;当电流强度恒定时,磁流体膜中的磁感应强度和磁场强度沿厚度方向可视为常数;随着电流强度的增加,磁流体膜的磁感应强度和磁场强度均增加。  相似文献   

13.
多工况机械密封性能实验装置及测控系统设计   总被引:1,自引:0,他引:1  
建立了一套在不同压力、转速、温度条件下对机械密封性能进行实验研究的装置,其密封介质或隔离流体可为水、油、空气和气水混合物等,其主轴转速、介质或隔离流体压力、流量等参数可通过计算机调节.该实验台可对多种型式机械密封的密封性能进行实验研究,可对机械密封性能参数,如功率消耗,端面温度、膜压和膜厚,磨损量等,进行自动采集、存储及处理.采用该实验台对螺旋槽下游泵送机械密封进行了测试,结果表明该实验装置可满足要求.  相似文献   

14.
密封端面微间隙液膜特性是上游泵送机械密封性能研究的关键。采用Pro/E wildfire软件建立参数化螺旋槽上游泵送机械密封端面微间隙液膜几何模型,以清水为工作介质,使用Fluent软件,对跨尺度密封端面微间隙流场进行三维数值模拟,得到开启力及压力分布规律,并与有关测试结果进行对比分析,实验数据与模拟数值基本吻合,表明所采用的模拟方案可对螺旋槽上游泵送机械密封微间隙三维流场进行较好地描述,该方法可用于密封端面微间隙流场及性能的系统研究;对端面压强分布进行分析,结果表明,在螺旋槽外槽根处存在最大静压,液膜开启力的增大主要来源于槽根产生的最大静压。  相似文献   

15.
为了研究动压型机械密封液膜汽化特性和密封性能,建立了涉及水的饱和温度与压力的关系、黏温效应以及牛顿流体内摩擦效应的密封间隙液膜汽化计算模型,以螺旋槽机械密封为例分析了工况变化对液膜汽化特性及密封性能的影响规律。研究结果表明:介质温度升高时,存在平均气相体积分数突增的临界温度值,且随转速的增大临界温度值增大;介质压力和转速的增大对汽化有抑制作用,转速增大易使较高的汽化程度迅速降低且在某转速值处出现突变点,介质温度升高使得突变转速值增大;密封性能受工况变化的影响明显,特别是在汽化临界温度值、突变转速值处性能的变化速率迅速增大;液膜汽化首先发生在螺旋槽背风侧堰区,且随介质温度升高快速覆盖槽堰区并向坝区推进;随着转速的增大,润滑膜气相的周向分布更加均匀且高汽化区域会向外径侧移动。  相似文献   

16.
根据液体润滑理论建立了斜线槽液体润滑非接触式机械密封数值分析模型,定义了斜线槽的主要几何结构参数,采用有限元方法求解雷诺方程,获得了端面液膜压力分布,分析了斜线槽端面几何参数对端面开启力、泄漏量、液膜刚度等对密封性能参数的影响规律。结果表明,斜线槽槽根半径不能取值过大或过小,大约为58mm时能取得最优的密封性能;斜线槽液体润滑非接触式机械密封倾斜角α1不应该大于倾斜角α2,否则密封性能会很大程度上削弱。  相似文献   

17.
磁流体分散稳定机理分析研究   总被引:8,自引:0,他引:8  
磁流体是一种固—液分散体系,它不仅具有固体磁性材料的强磁性,而且具有液体的流动性.磁流体的应用基础是它可以被控制、定位、定向与移动,即通过控制它的流变性,调节它在使用中的磁力强度、流动方向、磁性材料颗粒的聚集形式和浓度,从而能改善一些领域内现有产品的结构、制造工艺和使用性能.目前磁流体已广泛用于机械、电子、化工、冶金、能源、环保、医疗等方面,例如:密封、润滑等等.  相似文献   

18.
为研究微扰下的波度端面机械密封的动态特性,基于流体润滑理论和小扰动法,考虑液膜空化建立计入JFO边界条件的微扰膜压控制方程,数值求解密封端面液膜三自由度微扰下的动态刚度和阻尼系数,分析几何参数和操作参数对波度端面机械密封动态特性系数的影响规律。结果表明:随着介质压力的增大,液膜动态刚度和阻尼系数均增大,有利于提升密封动态稳定性;高转速下虽液膜动态刚度系数增大,但液膜阻尼特性变差,密封工况运行易产生失稳;随着波锥比的增大,液膜动态刚度和阻尼系数均增大;波数约为8、坝宽比约为025时,液膜动态刚度和阻尼系数能得到相对优化结果。  相似文献   

19.
动压密封端面间液膜发生汽化相变,直接改变了端面间的流体润滑方式,对密封的稳定性产生重要影响。建立了液膜汽化相变数值计算模型,研究了不同工况和结构参数对液膜汽化相变程度和区域的影响,分析了液膜汽化相变后密封性能的变化规律。结果表明:工况和结构参数对液膜的汽化相变有着不同程度的影响,随着转速、压力和槽深的增加,液膜的汽化相变被抑制。当转速高于3×10~4 r/min、压力高于0.6 MPa、螺旋角大于20°、槽深大于7 μm时,液膜会发生逆汽化现象。液膜的汽化相变对密封性能产生直接的影响。合理选择密封结构参数,可有效利用和控制相变,提高密封性能。  相似文献   

20.
"零压差零泄漏"液体润滑螺旋槽机械密封性能的实验研究   总被引:6,自引:1,他引:5  
通过实验方法,研究了内外双螺旋槽机械密封端面简的液膜压力和端面温升。液膜压力直接反映了密封端面的润滑状况,液膜压力开始随转速的增加而增大,当转速较大时,随转速的再增大而下降。正常运转时,端面温升很小。实验研究表明,螺旋槽机械密封能在保持零泄漏的同时,实现端面的非接触。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号