首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 213 毫秒
1.
We report the first Raman spectra of reduced nicotinamide adenine dinucleotide (NADH) when bound to an enzymatic active site, that of liver alcohol dehydrogenase (LADH). This was obtained by subtracting the Raman spectrum of LADH from that of the binary LADH/NADH complex. There are significant changes in the spectrum of bound NADH as compared to that in solution. The data indicate that both the nicotinamide moiety and the adenine moiety are involved in the binding. At least one of the two NH2 moieties of NADH also participates.  相似文献   

2.
H Deng  J Zheng  D Sloan  J Burgner  R Callender 《Biochemistry》1989,28(4):1525-1533
The binding of the coenzymes NAD+ and NADH to lactate dehydrogenase causes significant changes in the Raman spectra of both of these molecules relative to spectra obtained in the absence of enzyme. The molecular motions of the bound adenine moiety of both NAD+ and NADH as well as adenine containing analogues of these coenzymes produce Raman bands that are essentially identical, suggesting that the binding of adenine to the enzyme is the same regardless of the nicotinamide head-group nature. We also have observed that the molecular motions of the bound adenine moiety are different from both those obtained when it is in either water, various hydrophobic solvents, or various other solvent compositions. Protonation of the bound adenine ring at the 3-position is offered as a possible explanation. Significant shifts are observed in both the stretching frequency of the carboxamide carbonyl of NAD+ and the rocking motion of the carboxamide NH2 group of NADH. These shifts are probably caused by hydrogen bonding with the enzyme. The interaction energies of these hydrogen-bonding patterns are discussed. The aromatic nature of the nicotinamide moiety of NAD+ appears to be unchanged upon binding. Pronounced changes in the Raman spectrum of the nicotinamide moiety of NADH are observed upon binding; some of these changes are understood and discussed. Finally, these results are compared to analogous results that were recently reported for liver alcohol dehydrogenase [Chen et al. (1987) Biochemistry 26, 4776-4784]. In general, the coenzyme binding properties are found to be quite similar, but not identical, for the two enzymes.  相似文献   

3.
H Deng  J Burgner  R Callender 《Biochemistry》1991,30(36):8804-8811
We report here on the Raman spectra of NADH, 3-acetylpyridine adenine dinucleotide, APAD+, and a fragment of these molecules, adenosine 5'-diphosphate ribose (ADPR) bound to the mitochondrial (mMDH) and cytoplasmic (or soluble, sMDH) forms of malate dehydrogenase. We observe changes in the Raman spectrum of the adenosine moiety of these cofactors upon binding to mMDH, indicating that the binding site is hydrophobic. On the other hand, there is little change in the spectrum of the adenosine moiety when it binds to sMDH. Such observations are in clear contrast with those results obtained in LDH and LADH, where there are significant changes in the spectrum of the adenosine moiety when it binds to these two proteins. A strong hydrogen bond is postulated to exist between amide carbonyl group of NAD+ and the enzyme in the binary complexes with both mMDH and sMDH on the basis of a sizable decrease in the frequency of the carbonyl double bond. The interaction energy for formation of a hydrogen bond is the same as found previously for LDH, and we estimate that it is 2.8 kcal/mol more favorable in the binary complex than in water. A hydrogen bond is also detected between the amide-NH2 group of NADH and sMDH that is stronger than that formed in water and is of the same size as found in LDH. Surprisingly, the hydrogen bond to the -NH2 group in mMDH is the same as that found for water.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Ultraviolet resonance Raman (UVRR) spectra, with 260-nm excitation, are reported for oxidized and reduced nicotinamide adenine dinucleotides (NAD+ and NADH, respectively). Corresponding spectra are reported for these coenzymes when bound to the enzymes glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and liver and yeast alcohol dehydrogenases (LADH and YADH). The observed differences between the coenzyme spectra are interpreted in terms of conformation, hydrogen bonding, and general environment polarity differences between bound and free coenzymes and between coenzymes bound to different enzymes. The possibility of adenine protonation is discussed. UVRR spectra with 220-nm excitation also are reported for holo- and apo-GAPDH (GAPDH-NAD+ and GAPDH alone, respectively). In contrast with the 260-nm spectra, these show only bands due to vibrations of aromatic amino acid residues of the protein. The binding of coenzyme to GAPDH has no significant effect on the aromatic amino acid bands observed. This result is discussed in the light of the known structural change of GAPDH on binding coenzyme. Finally, UVRR spectra with 240-nm excitation are reported for GAPDH and an enzyme-substrate intermediate of GAPDH. Perturbations are reported for tyrosine and tryptophan bands on forming the acyl enzyme.  相似文献   

5.
We have studied the binding nature of an aromatic aldehyde to the catalytic site of liver alcohol dehydrogenase from horse (LADH) using preresonance Raman spectroscopy. The compound p-(dimethylamino)benzaldehyde (DABA) is converted to the corresponding alcohol in the presence of nicotinamide adenine dinucleotide (NADH) and a catalytic amount of enzyme at neutral pH. A stable ternary complex of LADH/NADH/DABA can be formed if enzyme and coenzyme are in excess at high pH [Jagodzinski, P. W., Funk, G. F., & Peticolas, W. L. (1982) Biochemistry 21, 2193-2202]. We have obtained the preresonance Raman spectrum of bound DABA by subtracting the contribution of the binary complex of LADH/NADH from the spectrum of this stable ternary complex. In order to understand the normal mode patterns of DABA, four isotopically labeled DABA derivatives were synthesized and their Raman spectra, in solution and in the ternary complex, were measured. Three of these compounds contain substitutions in the functionally important aldehyde moiety: (i) In one such substitution, the aldehydic hydrogen atom was replaced by a deuterium; (ii) in another, this hydrogen atom was replaced by deuterium, and the aldehydic carbon atom was replaced by 13C; and (iii) in the third derivative, only the carbon atom was replaced by 13C. The fourth derivative has had the two hydrogen atoms at the 3- and 5-positions of the DABA ring replaced by deuterium atoms. We find that many of the spectral modes are fairly extended, involving both stretching and bending motions of the entire molecule, although a few modes are quite localized. We find that the normal mode structure of DABA changes considerably when it binds to LADH/NADH. As a model for the bound DABA, we have examined the zinc complexes of DABA (and all four isotopically labeled samples) in anhydrous diethyl ether and methylene chloride. A striking correspondence between the Raman spectra of the enzyme-bound DABA and DABA-Zn complexes in solution is found, which extends to all the isotopically labeled derivatives. This suggests that one of the major roles of LADH in the binding of DABA is to provide a divalent zinc ion to form a first-sphere Lewis acid complex. The data also suggest other interactions between enzyme-bound DABA with its protein surroundings and with the coenzyme NADH are quite minor. An estimate of the carbonyl bond character of bound DABA had been made on the basis of the response of Raman bands to isotopic labeling and on trends observed in spectra of DABA in solvents of various polarities.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
We have measured the Raman spectra of oxidized nicotinamide adenine dinucleotide, NAD+, and its reduced form, NADH, as well as a series of fragments and analogues of NAD+ and NADH. In addition, we have studied the effects of pH as well as deuteration of the exchangeable protons on the Raman spectra of these molecules. In comparing the positions and intensities of the peaks in the fragment and analogue spectra with those of NADH and NAD+, we find that it is useful to consider these large molecules as consisting of component parts, namely, adenine, two ribose groups, two phosphate groups, and nicotinamide, for the purpose of assigning their spectral features. The Raman bands of NADH and NAD+ are found generally to arise from molecular motions in one or another of these molecular moieties, although some peaks are not quite so easily identified in this way. This type of assignment is the first step in a detailed understanding of the Raman spectra of NAD+ and NADH. This is needed to understand the binding properties of NADH and NAD+ acting as coenzymes with the NAD-linked dehydrogenases as deduced recently by using Raman spectroscopy.  相似文献   

7.
The phosphorescence properties of liver alcohol dehydrogenase from horse were characterized at limiting concentrations of coenzyme and coenzyme analogues. The emission decay kinetics of Trp-314 in strong, slowly exchanging, ternary complexes with NADH/isobutyramide, NAD/pyrazole, and NADH/dimethyl sulfoxide displays a markedly nonexponential character. The analysis of decay components over the saturation curve reveals that the phosphorescence from singly bound protein molecules has a lifetime from 1 to 1.3 s, which is 2-3 times larger than observed with fully bound and unliganded enzyme. The remarkably tighter configuration reported by the triplet probe for the coenzyme-binding domain in half-saturated macromolecules is not exclusive of strongly inhibited ternary complexes. Measurements on binary complexes with NADH, ADPR, and the inactive coenzyme analogue 1,4,5,6-tetrahydronicotinamide adenine dinucleotide confirm that binding of the ligand to one subunit has qualitatively the same influence on protein structure. If the lifetime of Trp-314 provides clear evidence for an appreciable change in conformation at half-binding that is apparently triggered by the ADPR fragment of the coenzyme, such communication between subunits does not lead to allosteric phenomena in coenzyme binding.  相似文献   

8.
Ligand binding and stabilization of malate- and lactate dehydrogenase   总被引:1,自引:0,他引:1  
Binding of coenzymes, coenzyme fragments and phenolate ligands to malate- and lactate dehydrogenase was studied. From linear competition in titration experiments, the coenzyme binding site was concluded to bind all the ligands employed. The analogy between the phenolate ligands and tetraiodofluorescein which is known to bind at the adenosine binding site suggests binding of phenolates at this site. Coenzymes and coenzyme fragments retard the irreversible thermal inactivation of the enzymes. The retardation effect decreases in the order NADH greater than NAD greater than ADPR greater than or equal to AMP for both enzymes. Phenolate ligands binding to the adenosine pocket do not stabilize the enzymes. The stabilization is concluded to originate from the interaction of coenzyme phosphate and nicotinamide with the enzymes. The interactions with the adenosine moiety and with the second ribose seem to be ineffective in retardation of thermal denaturation.  相似文献   

9.
Rat liver S-adenosylhomocysteinase, a homotetramer, was resolved by treatment with acid ammonium sulfate into apoenzyme and NAD. The apoenzyme thus prepared retained a tetrameric structure but differed in the mobility on nondenaturing polyacrylamide gel electrophoresis. The inactive apoenzyme was reactivated upon incubation with NAD. The restoration of activity paralleled with the tight binding of NAD to apoenzyme, and full activity was obtained when 4 mol of NAD were bound per mol of apoenzyme. The kinetics of reconstitution were apparently biphasic and suggest the existence of two conformers in a slow equilibrium, one of which binds the coenzyme rapidly while the other does so very slowly, if at all. In addition to NAD, apoadenosylhomocysteinase tightly bound nicotinamide hypoxanthine dinucleotide, 3-acetylpyridine adenine dinucleotide and nicotinic acid-adenine dinucleotide. NADP was not bound. Catalytic activity was found only with the enzyme reconstituted with NAD or nicotinamide hypoxanthine dinucleotide. The spectral change observed on interaction of apoadenosylhomocysteinase with NAD was similar to those seen with adenine nucleotides, and was largely approximated by the addition of dioxane to aqueous solutions of adenine nucleotides. By comparison of the difference spectra, it is suggested that the adenine portion of the coenzyme is bound in the hydrophobic pocket of the protein, and that the binding is accompanied by perturbation of tryptophan residue of the protein.  相似文献   

10.
The geometry of seven NAD+ analogues bound to horse liver alcohol dehydrogenase (LADH) modified only in their nicotinamide group, have been studied using AMBER molecular mechanics energy-minimization procedures. Starting geometries were taken from X-ray crystallographic data for NAD+/Me2SO/LADH reported by Eklund and co-workers. In this study the NAD+ analogues were encaged by the constituent amino acids of the enzyme within a range of 0.6 nm from the initial NAD+/Me2SO/Zn2+ complex. The calculational method used is able to rationalize individual substituent effects and to evaluate the essential interactions between NAD+ analogue, enzyme, Me2SO and Zn2+ without the necessity of additional X-ray data. The results presented here demonstrate that the reactivity of NAD+ derivatives as reported in literature can be qualitatively related to the position of the pyridine moiety in the active site.  相似文献   

11.
The formation of binary complexes between sturgeon apoglyceralddhyde-3-phosphate dehydrogenase, coenzymes (NAD+ and NADH) and substrates (phosphate, glyceraldehyde 3-phosphate and 1,3-bisphosphoglycerate) has been studied spectrophotometrically and spectrofluorometrica-ly. Coenzyme binding to the apoenzyme can be characterized by several distinct spectroscopic properties: (a) the low intensity absorption band centered at 360 nm which is specific of NAD+ binding (Racker band); (b) the quenching of the enzyme fluorescence upon coenzyme binding; (c) the quenching of the fluorescence of the dihydronicotinamide moiety of the reduced coenzyme (NADH); (D) the hypochromicity and the red shift of the absorption band of NADH centered at 338 nm; (e) the coenzyme-induced difference spectra in the enzyme absorbance region. The analysis of these spectroscopic properties shows that up to four molecules of coenzyme are bound per molecule of enzyme tetramer. In every case, each successively bound coenzyme molecule contributes identically to the total observed change. Two classes of binding sites are apparent at lower temperatures for NAD+ Binding. Similarly, the binding of NADH seems to involve two distinct classes of binding sites. The excitation fluorescence spectra of NADH in the binary complex shows a component centered at 260 nm as in aqueous solution. This is consistent with a "folded" conformation of the reduced coenzyme in the binary complex, contradictory to crystallographic results. Possible reasons for this discrepancy are discussed. Binding of phosphorylated substrates and orthophosphate induce similar difference spectra in the enzyme absorbance region. No anticooperativity is detectable in the binding of glyceraldehyde 3-phosphate. These results are discussed in light of recent crystallographic studies on glyceraldehyde-3-phosphate dehydrogenases.  相似文献   

12.
Liver alcohol dehydrogenase (LADH) with copper in place of the catalytic zinc has recently been proposed to contain a type 1 site analogous to that in "blue" copper proteins. Resonance Raman spectra for the copper-substituted enzyme, Cu(II) X LADH, and its binary complexes with reduced nicotinamide adenine dinucleotide (NADH) and pyrazole support this viewpoint. These spectra have two dominant features: a sharp peak at approximately 415 cm-1, which is believed to be associated with vibration of the single histidine ligand, and a broader, asymmetric band at approximately 350 cm-1, whose components are assigned predominantly to vibrational modes of the two cysteinate ligands. The high frequency of these transitions, which is reminiscent of the blue copper proteins, is ascribed to the tetrahedral nature of the metal site that produces unusually short Cu-S bonds and coupled vibrational modes. Solvent exchange with H218O reveals no contribution to the resonance Raman spectrum of the water molecule, which is a metal ligand in free Cu(II) X LADH; however, the spectrum of the binary complex with pyrazole has several new peaks attributable, in part, to pyrazole ligation. The strong similarity among the vibrational spectra demonstrates that the Cu(II) environment in alcohol dehydrogenase maintains its near-tetrahedral geometry in the various enzyme derivatives. The resonance Raman spectrum of Ni(II) X LADH is close to that of Cu(II) X LADH and suggests a similar tetrahedral site. The Raman spectra presented here together with available optical and EPR data indicate that Cu(II) X LADH belongs to the type 1 copper classification and, thus, can provide new insights into this unusual coordination geometry.  相似文献   

13.
A Gafni 《Biochemistry》1978,17(7):1301-1304
The CD (circular dichroism) and CPL (circular polarization of luminescence) spectra of NADPH in aqueous solution were studied and found to be markedly different. The spectra were not affected by cleavage of the coenzyme molecule with phosphodiesterase. The differences are thus not due to the existence of extended and folded conformations of NADPH and it is concluded that they originate in excited state conformational changes of the nicotinamide--ribose fragment. Opposite signs of both the CD and CPL spectra were observed for NADH bound to horse liver alcohol dehydrogenase and to beef heart lactate dehydrogenase indicating structural differences between the nicotinamide binding sites. The binding of substrate analogues to enzyme--coenzyme complexes did not affect the CD spectra and hence no significant conformational changes are induced upon formation of the ternary complexes. No changes in the CPL spectrum of NADH bound to lactate dehydrogenase were observed upon adding oxalate to form the ternary complex. Marked differences were found between the CPL spectra of binary and ternary complexes with liver alcohol dehydrogenase, while the CD spectra of these complexes were identical. It is concluded that a conformational change of the excited NADH molecule occurs in the binary but not in the ternary complex involving LADH, thus indicating an increased rigidity of the latter complex.  相似文献   

14.
R S Ehrlich  R F Colman 《Biochemistry》1992,31(49):12524-12531
The coenzyme selectivity of pig heart NAD-dependent and NADP-dependent isocitrate dehydrogenase has been investigated by nuclear magnetic resonance through the use of coenzyme analogues. For both isocitrate dehydrogenases, more than 10-fold lower maximal activity is observed with thionicotinamide adenine dinucleotide [sNAD(P)+] than with NAD(P)+ or acetylpyridine adenine dinucleotide [acNAD-(P)+] as coenzyme. Nuclear Overhauser effect measurements failed to reveal any differences in the adenine-ribose conformations among the enzyme-bound analogues. The 2'-phosphate resonance of the enzyme-bound NADP+ analogues showed the same change in chemical shift observed for the natural coenzyme and revealed the same lack of pH dependence in the range from pH 5.4 to 8.2. NADP-dependent isocitrate dehydrogenase exhibits only small differences in Michaelis constants for the coenzymes with various nicotinamide substituents, reflecting a predominant role for the adenosine moiety in binding. The conformation of the bound nicotinamide-ribose of the natural coenzymes was appreciably different from that of the coenzyme, sNAD(P)+, which shows low catalytic activity. For both isocitrate dehydrogenases, sNAD(P)+ bound to the enzymes exhibits a mixture of syn and anti conformations while only the anti conformation can be detected for NAD(P)+. Chemical shifts of NAD(P)+ enriched with 13C in the carboxamide indicate that interaction of this group with the enzymes may play a role in positioning the nicotinamide ring to participate in catalysis. Our results suggest that, although interaction of the nicotinamide moiety with the enzymes contributes relatively little to the energy of interaction in the binary complex, the enzymes must correctly position this group for the catalytic event.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The compounds 3-hydroxy-4-nitrobenzaldehyde and 3-hydroxy-4-nitrobenzyl alcohol are introduced as new chromophoric substrates for probing the catalytic mechanism of horse liver alcohol dehydrogenase (LADH). Ionization of the phenolic hydroxyl group shifts the spectrum of the aldehyde from 360 to 433 nm (pKa = 6.0), whereas the spectrum of the alcohol shifts from 350 to 417 nm (pKa = 6.9). Rapid-scanning, stopped-flow (RSSF) studies at alkaline pH show that the LADH-catalyzed interconversion of these compounds occurs via the formation of an enzyme-bound intermediate with a blue-shifted spectrum. When reaction is limited to a single turnover of enzyme sites, the formation and decay of the intermediate when aldehyde reacts with enzyme-bound reduced nicotinamide adenine dinucleotide E(NADH) are characterized by two relaxations (lambda f approximately equal to 3 lambda s). Detailed stopped-flow kinetic studies were carried out to investigate the disappearance of aldehyde and NADH, the formation and decay of the intermediate, the displacement of Auramine O by substrate, and 2H kinetic isotope effects. It was found that NADH oxidation takes place at the rate of the slower relaxation (lambda s); when NADD is substituted for NADH, lambda s is subject to a small primary isotope effect (lambda Hs/lambda Ds = 2.0); and the events that occur in lambda s precede lambda f. These findings identify the intermediate as a ternary complex containing bound oxidized nicotinamide adenine dinucleotide (NAD+) and some form of 3-hydroxy-4-nitrobenzyl alcohol. The blue-shifted spectrum of the intermediate strongly implies a structure wherein the phenolic hydroxyl is neutral. When constrained to a mechanism that assumes only the neutral phenolic form of the substrate binds and reacts and that the intermediate is an E(NAD+, product) complex, computer simulations yield RSSF and single-wavelength time courses that are qualitatively and semiquantitatively consistent with the experimental data. We conclude that the LADH substrate site can be divided into two subsites: a highly polar, electropositive subsite in the vicinity of the active-site zinc and, just a few angstroms away, a rather nonpolar region. The polar subsite promotes formation of the two interconverting reactive ternary complexes. The nonpolar region is the binding site for the hydrocarbon-like side chains of substrates and in the case of 3-hydroxy-4-nitrobenzaldehyde conveys specificity for the neutral form of the phenolic group.  相似文献   

16.
D-beta-Hydroxybutyrate dehydrogenase (D-3-hydroxybutyrate:NAD+ oxidoreductase, EC 1.1.1.30) is a lipid-requiring enzyme which specifically requires phosphosphatidylcholine for enzymic activity. The phosphatidylcholine modifies the binding and orientation of the coenzyme, NAD(H), with respect to the enzyme. In the present study, two derivatives of NAD, spin-labeled either at N-6 or C-8 of the adenine ring, were found to be active as coenzyme. The binding affinity of NADH to the enzyme was opitimized by increasing the salt concentration and increasing the pH from 6 to 8, with the pK at 6.8. Monomethylmalonate, a substrate analogue, was found to enhance NADH binding (Kd is reduced from 4 to 1 microM). Sulfite strongly enhances the binding of NAD+ via the enzyme-catalyzed formation of an adduct of sulfite with the nucleotide; the Kd for binding of NAD-sulfite is in the micromolar range, whereas NAD+ binding is more than a magnitude weaker. The binding of spin-labeled NAD(H) was further characterized by EPR spectroscopy. Increased sensitivity and resolution were obtained with the use of NAD(H) analogues perdeuterated in the spin-label moiety. For these analogues bound to D-beta-hydroxybutyrate dehydrogenase in phospholipid vesicles, EPR studies showed the spin-label moiety to be constrained and revealed two distinct components. Increasing the viscosity of the medium by addition of glycerol affected the EPR spectral characteristics of only the component with the smaller resolved averaged hyperfine splitting. The stage is now set to study motional characteristics of the enzyme, using these spin-labeled probes which mimic the coenzyme.  相似文献   

17.
Sir2 (silent information regulator 2) enzymes catalyze a unique protein deacetylation reaction that requires the coenzyme NAD(+) and produces nicotinamide and a newly discovered metabolite, O-acetyl-ADP-ribose (OAADPr). Conserved from bacteria to humans, these proteins are implicated in the control of gene silencing, metabolism, apoptosis, and aging. Here we examine the role of NAD(+) metabolites/derivatives and salvage pathway intermediates as activators, inhibitors, or coenzyme substrates of Sir2 enzymes in vitro. Also, we probe the coenzyme binding site using inhibitor binding studies and alternative coenzyme derivatives as substrates. Sir2 enzymes showed an exquisite selectivity for the nicotinamide base coenzyme, with the most dramatic losses in binding affinity/reactivity resulting from relatively minor changes in the nicotinamide ring, either by reduction, as in NADH, or by converting the amide to its acid analogue. Both ends of the dinucleotide NAD(+) are shown to be critical for high selectivity and high affinity. Among the NAD(+) metabolites tested none were able to allosterically activate, although all led to various extents of inhibition, consistent with competition at the coenzyme binding site. Nicotinamide was the most potent inhibitor examined, suggesting that cellular nicotinamide levels would provide an effective small molecule regulator of protein deacetylation and generation of OAADPr. The presented findings also suggest that changes in the physiological NAD(+):NADH ratio, without a change in NAD(+), would yield little alteration in Sir2 activity. That is, NADH is an extremely ineffective inhibitor of Sir2 enzymes (average IC(50) of 17 mm). We propose that changes in both free nicotinamide and free NAD(+) afford the greatest contribution to cellular activity of Sir2 enzymes but with nicotinamide having a more dramatic effect during smaller fluctuations in concentration.  相似文献   

18.
Three types of potential affinity chromatography columns have been examined for the purification of sn-glycerol-4-phosphate dehydrogenase (EC 1.1.1.8) from rabbit tissues. Each column contained nicotinamide adenine dinucleotide (NAD) covalently attached to an agarose matrix with a different mode of attachment for each column. The most effective column was one in which the NAD was linked to the agarose via the C-8 position of the adenine moiety. Release of the bound enzyme from this column was accomplished by elution with NADH or NAD. The enzymes from brain, heart, kidney, muscle and liver were purified using this procedure with nearly quantitative yields and up to a 90-fold purification. The binding capacity and elution profiles were dependent upon pH, ionic strength and temperature. The capacity was lowest at pH 7 and increased at higher and lower values. Increasing ionic strength and higher temperatures decreased the binding capacities.  相似文献   

19.
The interaction of 3-aminopyridine-adenine dinucleotide, an NAD + 2 analogue which is fluorescent at the pyridine end of the molecule, with rabbit muscle glyceraldehyde-3-phosphate dehydrogenase was investigated. The fluorescence properties of the AAD+ molecule were used to monitor the nicotinamide subsites ou the GPDHase tetramer, the fluorescent aminopyridine moiety of the molecule serving as an intrinsic probe. Although the binding of AAD+ wag found to be negatively co-operative, no conformational changes induced at the nicotinamide subsite upon coenzyme binding were found to be transmitted to neighboring subunits. These findings, in conjunction with our earlier findings and with the observation that different NAD+ analogues which differ in the chemistry of the pyridine moiety bind with different extents of co-operativity, enable us to offer specific roles for the nicotinamide and the adenine subsites in generating the negative co-operativity.It is suggested that the structure of the pyridine moiety of the coenzyme controls the mode of binding of the pyridine moiety to the nicotinamide subsite. This, in turn, controls the orientation of the adenine moiety with respect to its subsite, thereby determining the mode of the interactions between the adenine and its binding domain. As the propagation of conformational changes caused by these interactions to neighboring subunits is believed to be the cause of the negative co-operativity exhibited by this enzyme towards coenzyme binding, the structure of the pyridine moiety controls this phenomenon.  相似文献   

20.
1. The inhibition of alkaline phosphatase by NAD(+), NADH, adenosine and nicotinamide was studied. 2. All of these substances except NAD(+) act as uncompetitive inhibitors, i.e. double-reciprocal plots are parallel. NAD(+), however, is a ;mixed' inhibitor of alkaline phosphatase and is less potent than NADH. 3. Inhibition studies with pairs of the inhibitors suggest that, in spite of the difference in type of inhibition, NAD(+) and NADH bind to alkaline phosphatase at a common site. Adenosine and nicotinamide also seem to bind at the NAD site and the binding of adenosine is facilitated by nicotinamide, and vice versa. 4. The facilitation may indicate the occurrence of an induced fit for NAD(+) and NADH. Attempts to desensitize alkaline phosphatase to NAD(+) and NADH inhibition by partial denaturation were unsuccessful. 5. The results are discussed in terms of a two-site model in which separate, but interacting, regions exist on the enzyme to accommodate the adenosine and nicotinamide moieties of NAD, and a single-site model in which the adenosine part of the molecule is bound preferentially and this interacts with the nicotinamide fraction. 6. The activity of alkaline phosphatase can be changed fourfold by alteration of the NAD(+)/NADH ratio. This sensitivity to the redox state of the coenzyme could be a means of controlling phosphatase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号