首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
A conceptual trigeneration system is proposed based on the conventional gas turbine cycle for the high temperature heat addition while adopting the heat recovery steam generator for process heat and vapor absorption refrigeration for the cold production. Combined first and second law approach is applied and computational analysis is performed to investigate the effects of overall pressure ratio, turbine inlet temperature, pressure drop in combustor and heat recovery steam generator, and evaporator temperature on the exergy destruction in each component, first law efficiency, electrical to thermal energy ratio, and second law efficiency of the system. Thermodynamic analysis indicates that exergy destruction in combustion chamber and HRSG is significantly affected by the pressure ratio and turbine inlet temperature, and not at all affected by pressure drop and evaporator temperature. The process heat pressure and evaporator temperature causes significant exergy destruction in various components of vapor absorption refrigeration cycle and HRSG. It also indicates that maximum exergy is destroyed during the combustion and steam generation process; which represents over 80% of the total exergy destruction in the overall system. The first law efficiency, electrical to thermal energy ratio and second law efficiency of the trigeneration, cogeneration, and gas turbine cycle significantly varies with the change in overall pressure ratio and turbine inlet temperature, but the change in pressure drop, process heat pressure, and evaporator temperature shows small variations in these parameters. Decision makers should find the methodology contained in this paper useful in the comparison and selection of advanced heat recovery systems.  相似文献   

2.
In the present study, a novel solar driven combined power and ejector refrigeration system (CPER) of 50 kW power capacity composed of an ORC (organic Rankine cycle) and an ejector refrigeration system is investigated. Solar driven CPER system is composed of two main cycles: collector cycle and refrigeration cycle. The collector cycle is made of a U-tube ETC and circulation pump and the ejector refrigeration cycle consists of generator, turbine, ejector, heat exchanger, condenser, evaporator, expansion valve, and pump. Thermodynamic performance of the proposed CPER system is evaluated and a thermo-economic analysis is conducted using the SPECO (specific exergy costing) method. A parametric study showed the effects of condenser temperature, evaporator temperature, generator pressure, turbine back pressure and turbine extraction ratio. The genetic algorithm optimization analysis is conducted which shows 25.5% improvement in thermal energy, 21.27% in exergy efficiency, and 7.76% reduction in the total cost of the CPER system. The results reveal that the performance of the CPER system is considerably improved at higher temperatures of generator and evaporator.  相似文献   

3.
提出一种新型跨临界二氧化碳(trans-critical carbon dioxide,TCO2)再压缩循环和喷射器制冷循环耦合的冷电联供系统。该系统在输出电能的同时,利用低品位热能驱动喷射器工作输出冷量。以输出电量1 MW为设计目标,对比冷电联供系统和再压缩发电系统的性能,研究联供系统各部件(火用)损和主要热力参数对其性能的影响。结果表明:联供系统利用CO2余热驱动喷射器输出冷量,循环热效率高于单一再压缩系统;加热器(火用)损所占比例最大,回热器次之;透平进口温度、压力和背压对联供系统工质流量、循环效率、输出功率、加热器功率、压缩机耗功及喷射器制冷量等参数影响较大;而冷凝温度和蒸发温度仅对制冷循环制冷量影响较大。在设定条件下,联供系统的循环热效率和(火用)效率可分别达到46.99%和47.21%。  相似文献   

4.
Refrigeration cogeneration systems which generate power alongside with cooling improve energy utilization significantly, because such systems offer a more reasonable arrangement of energy and exergy “flows” within the system, which results in lower fuel consumption as compared to the separate generation of power and cooling or heating. This paper proposes several novel systems of that type, based on ammonia–water working fluid. Importantly, general principles for integration of refrigeration and power systems to produce better energy and exergy efficiencies are summarized, based primarily on the reduction of exergy destruction. The proposed plants analyzed here operate in a fully-integrated combined cycle mode with ammonia–water Rankine cycle(s) and an ammonia refrigeration cycle, interconnected by absorption, separation and heat transfer processes. It was found that the cogeneration systems have good performance, with energy and exergy efficiencies of 28% and 55–60%, respectively, for the base-case studied (at maximum heat input temperature of 450 °C). That efficiency is, by itself, excellent for cogeneration cycles using heat sources at these temperatures, with the exergy efficiency comparable to that of nuclear power plants. When using exhaust heat from topping gas turbine power plants, the total plant energy efficiency can rise to the remarkable value of about 57%. The hardware proposed for use is conventional and commercially available; no hardware additional to that needed in conventional power and absorption cycles is needed.  相似文献   

5.
This paper discusses the conservation of energy in a cogeneration system. A steam power cycle (Rankine) produces electrical power 2 MW and steam is bleeded off from the turbine at 7 bar to warm a factory or units of buildings during the winter or to supply a steam ejector refrigeration cycle to air-conditioning the same area during the summer. In the summer this system can be as alternative solution instead of absorption. Certainly the ejector refrigeration unit is more economical than absorption unit. The ratio of electrical power/heat is varied into the region (0.1–0.4) and the evaporator temperature of the ejector cycle is varied into the region (10–16 °C). A computer program has been developed for the study of performance parameters of the cogeneration system.  相似文献   

6.
A refrigeration system was developed which combines a basic vapor compression refrigeration cycle with an ejector cooling cycle. The ejector cooling cycle is driven by the waste heat from the condenser in the vapor compression refrigeration cycle. The additional cooling capacity from the ejector cycle is directly input into the evaporator of the vapor compression refrigeration cycle. The governing equations are derived based on energy and mass conservation in each component including the compressor, ejector, generator, booster and heat exchangers. The system performance is first analyzed for the on-design conditions. The results show that the COP is improved by 9.1% for R22 system. The system is then compared with a basic refrigeration system for variations of five important variables. The system analysis shows that this refrigeration system can effectively improve the COP by the ejector cycle with the refrigerant which has high compressor discharge temperature.  相似文献   

7.
The objectives of this paper are to develop a novel cycle with refrigerant Rankine and refrigeration cycles, and to discuss the thermodynamic analysis of the cycle and the adequacy of the development. The combined cycle uses only one working fluid, has a simple mechanical system and does not have abrading parts. Three different refrigerants are evaluated to find the best candidate for the novel combined cycle—R123, R134a and R245ca. It is found that the R123 cycle gives the highest cycle efficiency among all cycles considered in the present study. The base cycle has a low efficiency because of the high temperature at the turbine outlet. By recovering the heat at the turbine outlet, the overall COP increases by 47% in case of the R245ca cycle. In the base cycle, COP depends mostly on the boiler pressure, while in the modified cycle with the recuperator, the cycle efficiency depends mostly on the boiler temperature. Considering the cycle efficiency and environmental issues, it is concluded that R245ca is the most promising refrigerant out of the cycles considered in the present paper.  相似文献   

8.
The combined power and cooling cycles driven by waste heat and renewable energy can provide different kinds of energy forms and achieve a higher thermodynamic efficiency. However, only a few researchers have focused on the improvement of temperature matching between the heat source and working fluid. This paper proposes a transcritical power and ejector refrigeration cycle (TPERC) to improve temperature matching between the heat source and working fluid. Based on the modelling of the TPERC system, a comparison of working fluids and the effects of system parameters on the cooling capacity, work output, thermal efficiency and exergy efficiency are discussed. The results show that of the seven working fluids selected, R1234ze has the largest thermal efficiency and exergy efficiency, principally due to having the highest critical temperature. At the identical turbine back pressure, condensing temperature and evaporation temperature, the turbine inlet temperature and its corresponding generation pressure have little impact on thermal efficiency.  相似文献   

9.
Jet-refrigeration cycles seem to provide an interesting solution to the increasing interest in environment protection and the need for energy saving due to their low plant costs, reliability and possibility to use water as operating fluid. A steam/steam ejector cycle refrigerator is investigated introducing a two-stage ejector with annular primary at the second stage. The steady_state refrigerator, exchanging heat with the water streams at inlet fixed temperatures at the three shell and tube heat exchangers, evaporator, condenser and generator, is considered as an open system. Heat transfer irreversibilities in the heat exchangers and external friction losses in the water streams are considered, ignoring the internal pressure drop of the vapor. A simulation program numerically searches the maximum COP at given external inlet fluid temperatures as a function of mass flows, dimensions and temperature differences in the heat exchangers. The code gives the ejector and heat exchangers design parameters.  相似文献   

10.
A theoretical study of a novel regenerative ejector refrigeration cycle   总被引:1,自引:0,他引:1  
There has been a demand for developments of the ejector refrigeration systems using low grade thermal energy, such as solar energy and waste heat. In this paper, a novel regenerative ejector refrigeration cycle was described, which uses an auxiliary jet pump and a conventional regenerator to enhance the performance of the novel cycle. The theoretical analysis on the performance characteristics was carried out for the novel cycle with the refrigerant R141b. Compared with the conventional cycle, the simulation results show that the coefficient of performance (COP) of the novel cycle increases, respectively, by from 9.3 to 12.1% when generating temperature is in a range of 80–160 °C, the condensing temperature is in a range of 35–45 °C and the evaporating temperature is fixed at 10 °C. Especially due to the enhanced regeneration with increasing the pump outlet pressure, the improvement of COP of the novel cycle is approached to 17.8% compared with that in the conventional cycle under the operating condition that generating temperature is 100 °C, condensing temperature is 40 °C and evaporating temperature is 10 °C. Therefore, the characteristics of the novel cycle performance show its promise in using low grade thermal energy for the ejector refrigeration system.  相似文献   

11.
Experimental investigation on R134a vapour ejector refrigeration system   总被引:6,自引:1,他引:5  
The experimental investigation of the performance of a vapour ejector refrigeration system is described. The system uses R134a as working fluid and has a rated cooling capacity of 0.5 kW. The influence of generator, evaporator and condenser temperatures on the system performance is studied. This kind of system can be operated with low grade thermal energy such as solar energy, waste heat, etc. The operating conditions are chosen accordingly as, generator temperature between 338 K and 363 K, condenser temperature between 299 K and 310.5 K, and evaporator temperature between 275 K and 285.5 K. Six configurations of ejectors of different geometrical dimensions are selected for the parametric study. The performance of the refrigeration system at different operating temperatures is presented.  相似文献   

12.
In the proposed cogeneration cycle, a LiBr-H2O absorption refrigeration system is employed to the combined power and ejector refrigeration system which uses R141b as a working fluid. Estimates for irreversibilities of individual components of the cycle lead to possible measures for performance improvement. Results of exergy distribution of waste heat in the cycle show that around 53.6% of the total input exergy is destroyed due to irreversibilities in the components, 22.7% is available as a useful exergy output, and 23.7% is exhaust exergy lost to the environment, whereas energy distribution shows 44% is exhaust energy and 19.7% is useful energy output. Results also show that proposed cogeneration cycle yields much better thermal and exergy efficiencies than the previously investigated combined power and ejector cooling cycle. Current investigation clearly show that the second law analysis is quantitatively visualizes losses within a cycle and gives clear trends for optimization.  相似文献   

13.
This paper describes the construction and performance of a novel combined system intended for natural gas transportation and power production, and for cooling of gas transported in a gas-main pipeline. The proposed system includes a gas turbine compressor, a combined electrogenerating plant and an ejector refrigeration unit operating with a hydrocarbon refrigerant. The combined electrogenerating plant consists of a high-temperature steam–power cycle and a low-temperature hydrocarbon vapor power cycle, which together comprise a binary vapor system. The combined system is designed for the highest possible effectiveness of power generation and could find wide application in gas-transmission systems of gas-main pipelines. Application of the proposed system would enable year-round power generation and provide cooling of natural gas during periods of high ambient temperature operation. This paper presents the main results of a theoretical study and design performance specifications of a low-grade heat-driven pilot ejector refrigeration machine operating with butane and isobutane.  相似文献   

14.
This paper is a part in a series that reports on the experimental study of the performance of the two-phase ejector expansion refrigeration cycle. In the present study, three two-phase ejectors are used as an expansion device in the refrigeration cycle. The effects of throat diameter of the motive nozzle, on the coefficient of performance, primary mass flow rate of the refrigerant, secondary mass flow rate of the refrigerant, recirculation ratio, average evaporator pressure, compressor pressure ratio, discharge temperature and cooling capacity, which have never before appeared in open literature, are presented. The effects of the heat sink and heat source temperatures on the system performance are also discussed.  相似文献   

15.
Experimental investigation of mass recovery adsorption refrigeration cycle   总被引:1,自引:0,他引:1  
The study investigates the performance of silica gel–water adsorption refrigeration cycle with mass recovery process by experimental prototype machine. In an adsorption refrigeration cycle, the pressures in adsorber and desorber are different. The mass recovery cycle utilizes the pressure difference to enhance the refrigerant mass circulation. Moreover, novel cycle was proposed for improvement of cooling output. In our previous study, simulation analysis shows that mass recovery cycle has the advantage over conventional single-stage. Experiments with prototype machine were conducted to investigate the performance improvement of mass recovery cycle in the present paper. Specific cooling power (SCP) and coefficient of performance (COP) were calculated with experimental data to analyze the influences of operating conditions. The proposed cycle was compared with the single-stage cycle in terms of SCP and COP. The results show that SCP of mass recovery cycle is superior to that of conventional cycle and mass recovery cycle is effective with low temperature heat source.  相似文献   

16.
In this study, an improved cooling cycle for a conventional multi-evaporators simple compression system utilizing ejector for vapour precompression is analyzed. The ejector-enhanced refrigeration cycle consists of multi-evaporators that operate at different pressure and temperature levels. A one-dimensional mathematical model of the ejector was developed using the equations governing the flow and thermodynamics based on the constant-area ejector flow model. The model includes effects of friction at the constant-area mixing chamber. The energy efficiency and the performance characteristics of the novel cycle are theoretically investigated. The comparison between the novel and conventional system was made under the same operating conditions. Also, a comparison of the system performances with environment friendly refrigerants (R290, R600a, R717, R134a, R152a, and R141b) is made. The theoretical results show that the COP of the novel cycle is better than the conventional system.  相似文献   

17.
In this paper, an ejector enhanced vapor injection CO2 transcritical heat pump cycle with sub-cooler (ESCVI) for heating application in cold regions is proposed. The thermodynamic analysis using energetic and exegetic methods is carried out to predict the performance characteristics of the ejector enhanced cycle, and then compared with those of the conventional vapor injection heat pump cycle with sub-cooler (SCVI). The simulation results demonstrate that the ejector enhanced cycle exhibits better performance than the conventional vapor injection cycle under the specified operating conditions. The improvements of the maximum system COP and volumetric heating capacity could reach up to 7.7% and 9.5%, respectively. Exergetic analysis indicates that the largest exergy destruction ratio is generated at the compressor followed by the evaporator and gas cooler. Additionally, the exergy efficiency of the ejector is introduced to quantify the effectiveness of the exergy recovery process, which may be a new criterion to evaluate the performance of the ejector enhanced vapor compression cycle.  相似文献   

18.
In this paper, the performance of the solar-driven ejector refrigeration system with iso-butane (R600a) as the refrigerant is studied. The effects that both the operating conditions and the solar collector types have on the system's performance are also examined by dynamic simulation. The TRNSYS and EES simulation tools are used to model and analyze the performance of a solar-driven ejector refrigeration system. The whole system is modelled under the TRNSYS environment, but the model of the ejector refrigeration subsystem is developed in the Engineering Equations Solver (EES) program. A solar fraction of 75% is obtained when using the evacuated tube solar collector. In the very hot environment, the system requires relatively high generator temperature, thus a flat plate solar collector is not economically competitive because the high amount of auxiliary heat needed to boost up the generator temperature. The results from the simulation indicate that an efficient ejector system can only work in a region with decent solar radiation and where a sufficiently low condenser temperature can be kept. The average yearly system thermal ratio (STR) is about 0.22, the COP of the cooling subsystem is about 0.48, and the solar collector efficiency is about 0.47 at Te 15 °C, Tc 5 °C above the ambient temperature, evacuated collector area 50 m2 and hot storage tank volume 2 m3.  相似文献   

19.
This paper discusses the feasibility of a vapor compression/absorption hybrid refrigeration cycle for energy saving and utilization of waste heat. The cycle employs propane as a natural refrigerant and a refrigeration oil as an absorbent. A prototype of the cycle is constructed, in which a compressor and an absorption unit are combined in series. The performance of the cycle is examined both theoretically and experimentally. Although the solubility of the propane with the oil is not enough as a working pair in the absorption unit, the theoretical calculation shows that the hybrid cycle has a potential to achieve a higher performance in comparison with a simple vapor compression cycle by using the waste heat. In the experiment, the prototype cycle is operated successfully and it is found that an improvement of an absorber is necessary to achieve the good performance close to the theoretical one. The application of an AHE (absorber heat exchanger) can reduce the heat input to a generator. Further examinations on some other combinations of refrigerant/refrigeration oil and additives are desirable.  相似文献   

20.
In this study, an advanced combined cycle-based power generation system, integrating biomass gasification with a solid oxide fuel cell (SOFC) module and an organic vapor turbine, has been modeled and analyzed. The thermodynamic model has been developed by integrating the component models through customized codes written using engineering equation solver software. Both energetic and exergetic analyses of the proposed system have been conducted under varying design and operating parameters to assess their effects on the performance of the proposed system. The study reveals that the integrated system yields a maximum overall energetic efficiency of 41.13%, occurring at a pressure ratio of 2.5 for the compressor. The gasifier is the component responsible for maximum exergy destruction (accounting for 32.36% of fuel exergy input), followed by the heat recovery vapor generator and the SOFC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号