首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 187 毫秒
1.
采用电子背散射衍射仪(EBSD)分析了Nb对取向硅钢热轧板、中间退火板、脱碳退火板及高温退火板的厚度方向晶粒尺寸、织构类型及体积分数的影响。结果表明,取向硅钢中添加Nb元素,得到纳米级NbCN与MnS与Cu_2S复合析出相,热轧板、中间退火与脱碳退火板晶粒细化。含Nb取向硅钢热轧板表层与次表层含有较高体积分数的{110}001Goss织构,热轧板中心层与脱碳退火板含有较高含量的γ纤维织构{111}112和{111}110。含Nb取向硅钢高温退火后Goss织构体积分数达到74.6%,而不含Nb取向硅钢Goss织构体积分数只有39.7%。  相似文献   

2.
对W800无取向硅钢热轧、冷轧、冷轧退火各阶段沿厚度方向分布的织构进行分析,结果表明,W800无取向硅钢热轧阶段的主要织构组分为{001}110反高斯织构,其含量由表层到中心逐渐增加,卷取使得W800无取向硅钢热轧板{001}110反高斯织构减弱,而{111}110、{111}112γ纤维织构增强;冷轧阶段的主要织构组分为{001}110、{112}110α纤维织构和{111}110、{111}112γ纤维织构,其中,由表层到中心α纤维织构逐渐增强,γ纤维织构逐渐减弱;退火会导致{001}110反高斯织构减弱,{111}110、{111}112γ纤维织构加强。  相似文献   

3.
研究了900~1000 ℃正火对高锰50W470无取向硅钢的组织、织构和磁性的影响。结果表明,随着正火温度的升高,成品板的平均磁感不断增加,而铁损在975 ℃最低。热轧板正火后的晶粒尺寸随正火温度升高不断增大,而对应冷轧、退火后的成品板晶粒尺寸先增大后减小(975 ℃时最大)。在975 ℃×5 min正火后,成品板中得到对磁性有利的{100}面织构和高斯织构,磁性能改善。高锰50W470无取向硅钢的最佳正火工艺为975 ℃×5 min,此工艺可改善高锰无取向硅钢的组织和织构,最终提高其磁性能。  相似文献   

4.
利用工业试验和OM、SEM和EBSD等系统地研究了830 ℃和860 ℃终轧温度下50W600无取向硅钢组织结构的演变规律及成品电磁性能。结果表明,提高终轧温度有利于促进热轧板特别是其心部的再结晶和晶粒长大,促进退火冷轧板的晶粒长大。50W600无取向硅钢在热轧-冷轧-退火过程中的织构演变规律主要为高斯织构{110}<001>→{112}<110>、{001}<110>和{111}面纤维织构→{111}面纤维织构。终轧温度从830 ℃提高到860 ℃,一方面减弱了热轧板中的{111}面纤维织构组分,另一方面增强了冷轧板中的{111}面纤维织构组分并减弱了其{001}<110>织构组分,最终促进退火冷轧板中对磁性有害的{111}面纤维织构组分减弱和对磁性有利的{001}<110>织构组分增强。提高终轧温度有利于无取向硅钢的铁损降低和磁感应强度提高。  相似文献   

5.
使用EBSD和XRD技术研究了1.3%Si无取向硅钢在不同退火温度条件下的微观组织、宏观织构和微观取向。分析了退火温度对此成分体系无取向硅钢再结晶组织和织构的影响;讨论了退火温度与无取向硅钢成品板磁性能的关系。实验结果表明:无取向硅钢的退火温度对其再结晶组织和成品板铁损值有影响,随着退火温度的上升,再结晶晶粒平均尺寸增大且铁损值下降。γ纤维织构是再结晶织构中的优势组分,高斯{110}100织构强度也较高。退火温度对再结晶织构也有影响,随着退火温度上升,γ织构的含量不断上升,其中{111}121织构强度高于{111}110织构强度;退火温度的上升降低了立方{100}100织构和旋转立方{100}110织构但增加了高斯{110}100织构的强度,高斯织构的强度在870℃时达8.8。高斯取向晶粒主要在{111}121取向晶粒附近出现,旋转立方取向晶粒主要出现{111}110取向晶粒附近。由于{111}面织构强度增加和立方织构、旋转立方织构强度的降低,随着退火温度的上升,无取向硅钢的磁感应强度下降。  相似文献   

6.
利用金相显微镜及XRD衍射仪对可逆冷轧过程中50W470硅钢的组织织构进行分析。结果表明:晶粒长程有序在第3道次被破坏,在金相显微镜下呈现出纤维状的带状组织;经第1道次冷轧变形,晶粒取向首先在α取向线及{001}<110>取向附近汇聚,但从第2道次冷轧变形开始,晶粒取向不断在α、γ取向线及{001}<110>取向附近汇聚,织构的变化主要表现在织构取向密度上。  相似文献   

7.
采用SEM、EBSD和XRD等分析手段研究了退火温度对含Ce新能源无取向电工钢组织及织构的影响。结果表明:800 ℃退火后,试验钢边部和中心部位均能观察到再结晶组织及亚晶组织,α线织构中的{112}<110>取向密度最高,γ线织构中的{111}<112>取向密度较弱,退火板存在少量η织构;830~920 ℃退火后,温度越高,再结晶越充分,α线织构取向密度下降,γ线织构取向密度增加,η织构基本消失;试验钢在950 ℃退火后发生了完全再结晶,平均晶粒尺寸为48.29 μm,γ线织构中的{111}<112>取向密度最高,为11.36。  相似文献   

8.
试验研究了无取向电工钢50W350在热轧、常化、冷轧和退火过程中的组织及织构演变。结果表明,热轧板组织分层明显,表层是细小的等轴晶,次表层是形变组织与等轴晶的混合组织,芯部是拉长的纤维组织;表层主要为(011)和(112)面织构组分,芯部主要为{001}100立方织构、{001}110旋转立方织构。常化板组织在厚度方向上与热轧板类似,各层平均晶粒尺寸较热轧板均增大,常化板表层主要为{112}110织构,芯部主要为{112}110织构和{001}110旋转立方织构。冷轧板为沿着轧制方向伸长的纤维组织,退火板为再结晶组织,平均晶粒尺寸为100. 84μm,主要为{001}100立方织构。  相似文献   

9.
利用EBSD技术对CGO硅钢热轧、中间退火、脱碳退火及二次再结晶退火组织及织构进行分析,研究了CGO硅钢各阶段加工制备过程中高斯{110}001晶粒的形状、尺寸及分布特点,分析了高斯取向晶粒在各工序过程中的遗传继承性特点。结果表明,CGO硅钢热轧板的次表层存在Goss取向晶粒,历经一次冷轧及中间退火后Goss取向晶粒基本消失,一次再结晶之后Goss织构仍不是主要织构,主要织构为{111}110和{111}112,说明Goss取向晶粒在二次再结晶退火前数量及尺寸上并不占优势,二次再结晶过程中Goss取向晶粒异常长大形成锋锐Goss织构。{111}110和{111}112织构组分的强度在一次冷轧中不断增加,{111}112织构组分的强度在二次冷轧后达到最大而{111}110织构组分是在初次再结晶后变强。  相似文献   

10.
研究了不同退火工艺对0.8%Si无取向硅钢织构及磁性能的影响。结果表明:退火板的再结晶织构以{111}强织构组分为主要特征,并伴随有{100}和{110}较弱织构组分。随着退火温度的升高或保温时间的延长,晶粒尺寸明显增大,不利的{111}织构组分明显增强,铁损指标P15/50与磁感指标B50均降低。在退火温度为860 ℃、保温时间为85 s的条件下,可获得最优的磁性能:P15/50=4.82 W/kg;B50=1.736 T。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号