首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Immobilization as a result of long-term bed rest can lead to gradual bone loss. Because of their distribution throughout the bone matrix and remarkable interconnectivity, osteocytes represent the major mechanosensors in bone and translate mechanical into biochemical signals controlling bone remodeling. To test whether immobilization affects the characteristics of the osteocyte network in human cortical bone, femoral diaphyseal bone specimens were analyzed in immobilized female individuals and compared with age-matched postmenopausal individuals with primary osteoporosis. Premenopausal and postmenopausal healthy individuals served as control groups. Cortical porosity, osteocyte number and lacunar area, the frequency of hypermineralized lacunae, as well as cortical bone calcium content (CaMean) were assessed using bone histomorphometry and quantitative backscattered electron imaging (qBEI). Bone matrix properties were further analyzed by Fourier transform infrared spectroscopy (FTIR). In the immobilization group, cortical porosity was significantly higher, and qBEI revealed a trend toward higher matrix mineralization compared with osteoporotic individuals. Osteocyte density and canalicular density showed a declining rate from premenopausal toward healthy postmenopausal and osteoporotic individuals with peculiar reductions in the immobilization group, whereas the number of hypermineralized lacunae accumulated inversely. In conclusion, reduced osteocyte density and impaired connectivity during immobilization are associated with a specific bone loss pattern, reflecting a phenotype clearly distinguishable from postmenopausal osteoporosis. Immobilization periods may lead to a loss of survival signals for osteocytes, provoking bone loss that is even higher than in osteoporosis states, whereas osteocytic osteolysis remains absent. © 2020 The Authors. Journal of Bone and Mineral Research published by American Society for Bone and Mineral Research.  相似文献   

2.
The species-specific relationships between trabecular morphology and osteocyte density were investigated in the femoral heads of 30 adult animals of five mammalian species (rat, rabbit, Rhesus monkey, pig, and cow). Our hypothesis is that osteocytes are mechanosensory cells and are involved in the regulation of bone remodeling. According to the predictions from a simulation model, this hypothesis implies that the influencing distance of osteocytes, together with the magnitude of the mechanical loads, determines the thickness of trabeculae and that the number of osteocytes primarily affects the rate of bone remodeling. The number of osteocytes per bone volume ranged from 93,200 mm?3 in rat to 31,900 mm?3 in bovine cancellous bone. Osteocyte density was inversely related to the size of the species. Since basal metabolic output is related to body mass, we speculate that osteocyte density may be related to metabolic rates. Trabecular thickness was larger in the cow than in the other species, but the range of variation between species was relatively small. This agrees with the hypothesis that trabecular thickness is limited by the domain that can be regulated by an osteocyte and that this domain is of similar size regardless of the species. Only in the rat was trabecular thickness considerably smaller than in the other species. This is probably due to the presence of the cartilaginous growth plate in the femoral head of the rat. The relationships with species are different for osteocyte density than for morphometric parameters. Hence, our data support our hypothesis that osteocyte density is not directly associated with the macroscopic trabecular architecture.  相似文献   

3.
Increased osteocyte apoptosis, as the result of estrogen deficiency, could play a role in the decrease of bone mass and bone strength seen in postmenopausal osteoporosis. We investigated whether treatment with raloxifene of postmenopausal women with osteoporosis affects osteocyte apoptosis. Transiliac bone biopsies were obtained from 26 osteoporotic women at baseline and after 2 years of treatment with placebo or raloxifene. Immunohistochemical detection of cleaved caspase-3 was performed on sections from nondecalcified bone biopsies to visualize apoptosis. In the trabecular bone total osteocytes, positively stained osteocytes and empty lacunae were counted and percent positive cells and percent empty lacunae determined. Statistical evaluation was performed by Wilcoxon’s paired t-test and Spearman’s rank correlations. There was no significant difference in percentage positive osteocytes between baseline and follow-up biopsies in both the placebo and the raloxifene groups. The percentage empty lacunae increased significantly in the placebo group (11.20 ± 1.43 vs. 9.00 ± 2.25, P = 0.014) but not in the raloxifene group. At baseline in both groups combined, there was a negative correlation between indices of bone remodeling and the percentage positive osteocytes (bone formation rate/bone volume r = −0.67, P = 0.001). We found no direct evidence for an effect of raloxifene treatment on osteocyte apoptosis, but small effects of raloxifene treatment cannot be excluded. The percent of apoptotic osteocytes was dependent on the level of bone remodeling in an individual.  相似文献   

4.
Osteocyte apoptosis is essential to activate bone remodeling in response to fatigue microdamage and estrogen withdrawal, such that apoptosis inhibition in vivo prevents the onset of osteoclastic resorption. Osteocyte apoptosis has also been spatially linked to bone resorption owing to disuse, but whether apoptosis plays a similar controlling role is unclear. We, therefore, 1) evaluated the spatial and temporal effects of disuse from hindlimb unloading (HLU) on osteocyte apoptosis, receptor activator of NF‐κB ligand (RANKL) expression, bone resorption, and loss in mouse femora, and 2) tested whether osteocyte apoptosis was required to activate osteoclastic activity in cortical and trabecular bone by treating animals subjected to HLU with the pan‐caspase apoptosis inhibitor, QVD (quinolyl‐valyl‐O‐methylaspartyl‐[‐2,6‐difluorophenoxy]‐methylketone). Immunohistochemistry was used to identify apoptotic and RANKL‐producing osteocytes in femoral diaphysis and distal trabecular bone, and µCT was used to determine the extent of trabecular bone loss owing to HLU. In both cortical and trabecular bone, 5 days of HLU increased osteocyte apoptosis significantly (3‐ and 4‐fold, respectively, p < 0.05 versus Ctrl). At day 14, the apoptotic osteocyte number in femoral cortices declined to near control levels but remained elevated in trabeculae (3‐fold versus Ctrl, p < 0.05). The number of osteocytes producing RANKL in both bone compartments was also significantly increased at day 5 of HLU (>1.5‐fold versus Ctrl, p < 0.05) and further increased by day 14. Increases in osteocyte apoptosis and RANKL production preceded increases in bone resorption at both endocortical and trabecular surfaces. QVD completely inhibited not only the HLU‐triggered increases in osteocyte apoptosis but also RANKL production and activation of bone resorption at both sites. Finally, µCT studies revealed that apoptosis inhibition completely prevented the trabecular bone loss caused by HLU. Together these data indicate that osteocyte apoptosis plays a central and controlling role in triggering osteocyte RANKL production and the activation of new resorption leading to bone loss in disuse. © 2016 American Society for Bone and Mineral Research.  相似文献   

5.
Androgens play a key role in the maintenance of male skeletal integrity. The regulation of this integrity by androgen receptor (AR) signaling has been mainly attributed to osteoblasts. Although osteocytes have emerged as key regulators of bone remodeling, the influence of sex steroids on these cells has been poorly studied. We aimed to investigate the role of AR signaling, specifically in osteocytes using the Cre/LoxP system in male mice (driven by dentin matrix protein 1 [ocy‐ARKOs]). Osteocyte fractions of control (AR(ex2)/Y) and ocy‐ARKO (ARflox(ex2)/Y; DMP1‐cre) mice isolated through sequential collagenase digestion showed increasing AR expression toward the mature osteocyte fraction of control males compared with the more immature fractions, whereas this was reduced by >80% in ocy‐ARKO osteocytes. The skeletal phenotype of mutant mice was further assessed by histomorphometry and quantitative micro‐computed tomography at 12 and 32 weeks of age. Ocy‐ARKOs had significantly lower trabecular bone volume and number in femora and tibias at 32 weeks as well as decreased trabecular number in the L5 vertebra at 12 weeks. Biomechanical testing showed that ocy‐ARKO femora were also stiffer and required a lower ultimate force to induce failure at 32 weeks. However, femoral cortical structure was not significantly different at any time point. The absence of AR in osteocyte also did not appear to affect trabecular bone formation nor its response to mechanical loading. In conclusion, selective inactivation of the AR in osteocytes of male mice accelerates age‐related deterioration of skeletal integrity. These findings provide evidence for a direct role of androgens in the maintenance of trabecular bone through actions of the AR in osteocytes. © 2012 American Society for Bone and Mineral Research.  相似文献   

6.
Iliac cancellous osteocyte density declines with age, but its relationship to vertebral fracture pathogenesis is unknown. We performed iliac bone biopsy in 44 women with clinical vertebral fracture and 56 healthy women. The fracture patients had 34% fewer osteocytes but no reduction in percent occupied lacunae. Some patients destined to sustain vertebral fracture make cancellous bone with fewer osteocytes. INTRODUCTION: Patient's with vertebral fracture have less bone than appropriate healthy controls, but other factors may contribute to bone fragility. Iliac cancellous osteocyte density declines with age in healthy women; we asked whether this variable differed between fracture patients and healthy controls. METHODS: Two groups of women were assembled. Forty-four (mean age, 66.2 years) had unequivocal evidence of bone fragility manifested as painful nontraumatic vertebral fracture, and 56 (mean age, 62.2 years) were skeletally healthy. All subjects underwent iliac bone biopsy. From archival embedded biopsy cores, new sections were stained with Goldner's trichrome, in which we enumerated osteocyte-occupied lacunae (stained), empty lacunae (unstained), and total lacunae per bone area. RESULTS: Cancellous osteocyte density was 34% lower in the fracture group than in the controls (p < 0.001); this difference was not a consequence of higher turnover, having less bone, or the small difference in age. The area under the receiver operating characteristic (ROC) curve for discrimination between the groups was >90% for osteocyte density and <75% for bone volume/tissue volume (BV/TV). The disease-related osteocyte deficit was accompanied by a proportionate reduction in empty lacunae and no change in percent occupied lacunae; therefore, it was not the result of premature death. Both superficial bone (<25 microm from the surface) and deep bone (>45 microm from the surface) were affected. In contrast, the age-related deficit is accompanied by an increase in empty lacunae and fall in percent osteocyte-occupied lacunae and occurs only in deep bone, but not in superficial bone. CONCLUSIONS: In some patients destined to sustain spontaneous vertebral compression fracture, iliac cancellous bone is made with fewer osteocytes than normal; the mechanism of osteocyte incorporation into bone needs more detailed study. Osteocyte deficiency could contribute to bone fragility, either by impairing the detection of fatigue microdamage or by reducing canalicular fluid flow. Current practices of defining vertebral fracture based on morphometry alone regardless of symptoms, and diagnosing osteoporosis based on bone densitometry alone regardless of fracture history, should be reexamined.  相似文献   

7.
Despite osteocytes' ideal position to sense the local environment and thereby influence bone remodeling, the function of osteocytes in bone remains controversial. In this study, histomorphometric examination of male and female femoral middiaphyseal cortical bone was conducted to determine if bone's remodeling response, indicated by tissue porosity and accumulation of damage, is associated with osteocyte lacunar density (number of osteocyte lacunae per bone area). The results support the sensory role of the osteocyte network as the decline in osteocyte lacunar density in human cortical bone is associated with the accumulation of microcracks and increase in porosity with age. Porosity and microcrack density increased exponentially with a decline in osteocyte lacunar density indicating that a certain minimum number of osteocytes is essential for an "operational" network. No gender-related differences were found in the relationship of osteocyte lacunar density to age, porosity, or microcrack density. The coefficient of variation of osteocyte lacunar density increased linearly with age, indicating that aging bone tissue is characterized by increased heterogeneity in the spatial organization of osteocytes. Osteocyte lacunar density, porosity, and microcrack density exhibited the same exponential probability density distribution in the donor population, indicating their regulation by similar biological phenomena.  相似文献   

8.
Parathyroid hormone–related protein (PTHrP) and parathyroid hormone (PTH) have N‐terminal domains that bind a common receptor, PTHR1. N‐terminal PTH (teriparatide) and now a modified N‐terminal PTHrP (abaloparatide) are US Food and Drug Administration (FDA)‐approved therapies for osteoporosis. In physiology, PTHrP does not normally circulate at significant levels, but acts locally, and osteocytes, cells residing within the bone matrix, express both PTHrP and the PTHR1. Because PTHR1 in osteocytes is required for normal bone resorption, we determined how osteocyte‐derived PTHrP influences the skeleton. We observed that adult mice with low PTHrP in osteocytes (targeted with the Dmp1(10kb)‐Cre) have low trabecular bone volume and osteoblast numbers, but osteoclast numbers were unaffected. In addition, bone size was normal, but cortical bone strength was impaired. Osteocyte‐derived PTHrP therefore stimulates bone formation and bone matrix strength, but is not required for normal osteoclastogenesis. PTHrP knockdown and overexpression studies in cultured osteocytes indicate that osteocyte‐secreted PTHrP regulates their expression of genes involved in matrix mineralization. We determined that osteocytes secrete full‐length PTHrP with no evidence for secretion of lower molecular weight forms containing the N‐terminus. We conclude that osteocyte‐derived full‐length PTHrP acts through both PTHR1 receptor‐mediated and receptor‐independent actions in a paracrine/autocrine manner to stimulate bone formation and to modify adult cortical bone strength. © 2017 American Society for Bone and Mineral Research.  相似文献   

9.
Qiu S  Rao DS  Palnitkar S  Parfitt AM 《BONE》2002,31(6):709-711
Iliac cancellous osteocyte density decreases with age in deep bone but not in superficial bone, most likely because of remodeling. It has been suggested that osteocytes can inhibit bone remodeling. Accordingly, we examined the relationship between osteocyte density and bone formation rate in 92 healthy women. In superficial bone (<25 μm from the surface), we found a weak but significant (p < 0.03) inverse correlation between BFR/BS and Ot. N/B.Ar that was unaffected by menopause and independent of age. A weaker positive relationship with empty lacunar density improved significance. The data appear to suggest a negative feedback loop, but osteocytes explain only 10% of the variance in BFR/BS, and 97% of the variance in osteocyte density is explained by total lacunar density. This measure of initial osteocyte density during bone formation has a high coefficient of variation (20%) indicating large individual differences. We conclude that: (1) our data support the proposal that osteocytes can inhibit bone remodeling; (2) osteocyte density in superficial bone depends mainly on initial osteocyte density during bone formation and is maintained but not regulated by bone remodeling; and (3) the inverse relationship between BFR/BS and osteocyte density may reflect the homeostatic need to maintain calcium exchangeability in the lining cell–osteocyte syncytium.  相似文献   

10.
Hyperthyroidism causes secondary osteoporosis through favoring bone resorption over bone formation, leading to bone loss with elevated bone fragility. Osteocytes that reside within lacunae inside the mineralized bone matrix orchestrate the process of bone remodeling and can themselves actively resorb bone upon certain stimuli. Nevertheless, the interaction between thyroid hormones and osteocytes and the impact of hyperthyroidism on osteocyte cell function are still unknown. In a preliminary study, we analyzed bones from male C57BL/6 mice with drug-induced hyperthyroidism, which led to mild osteocytic osteolysis with 1.14-fold larger osteocyte lacunae and by 108.33% higher tartrate-resistant acid phosphatase (TRAP) activity in osteocytes of hyperthyroid mice compared to euthyroid mice. To test whether hyperthyroidism-induced bone changes are reversible, we rendered male mice hyperthyroid by adding levothyroxine into their drinking water for 4 weeks, followed by a weaning period of 4 weeks with access to normal drinking water. Hyperthyroid mice displayed cortical and trabecular bone loss due to high bone turnover, which recovered with weaning. Although canalicular number and osteocyte lacunar area were similar in euthyroid, hyperthyroid and weaned mice, the number of terminal deoxynucleotidyl transferase–mediated deoxyuridine triphosphate nick end labeling (TUNEL)-positive osteocytes was 100% lower in the weaning group compared to euthyroid mice and the osteocytic TRAP activity was eightfold higher in hyperthyroid animals. The latter, along with a 3.75% lower average mineralization around the osteocyte lacunae in trabecular bone, suggests osteocytic osteolysis activity that, however, did not result in significantly enlarged osteocyte lacunae. In conclusion, we show a recovery of bone microarchitecture and turnover after reversal of hyperthyroidism to a euthyroid state. In contrast, osteocytic osteolysis was initiated in hyperthyroidism, but its effects were not reversed after 4 weeks of weaning. Due to the vast number of osteocytes in bone, we speculate that even minor individual cell functions might contribute to altered bone quality and mineral homeostasis in the setting of hyperthyroidism-induced bone disease. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).  相似文献   

11.
Estrogen,androgen, and the pathogenesis of bone fragility in women and men   总被引:2,自引:0,他引:2  
During growth, estrogen deficiency in females may produce increased bone size as a result of removal of inhibition of periosteal apposition, while failed endosteal apposition produces thin cortices and trabeculae in the smaller bone. In males, androgen deficiency produces reduced periosteal and endosteal apposition, reduced bone size, and cortical and trabecular thickness. At completion of longitudinal growth, advancing age is associated with emergence of a negative bone balance in each basic multicellular unit (BMU) because of reduced bone formation. Bone loss occurs, but slowly because the remodeling rate is slow. In midlife, in females, estrogen deficiency increases remodeling rate, increases the volume of bone resorbed, and decreases the volume of bone formed in each of the numerous BMUs remodeling bone on its endosteal (endocortical, trabecular, intracortical) surfaces so bone loss accelerates. In males, remodeling rate remains slow and is driven largely by reduced bone formation in the BMU. Hypogonadism in 20% to 30% of elderly men contributes to bone loss. In both sexes, calcium malabsorption and secondary hyperparathyroidism may partly be sex-hormone dependent and contributes to cortical bone loss. Concurrent periosteal apposition partly offsets endosteal bone loss, but less so in women than in men. More women than men fracture because their smaller skeleton incurs greater architectural damage and adapts less by periosteal apposition. Sex hormone deficiency during growth and aging is pivotal in the pathogenesis of bone fragility.  相似文献   

12.
Localized apoptosis of osteocytes, the tissue-resident cells within bone, occurs with fatigue microdamage and activates bone resorption. Osteoclasts appear to target and remove dying osteocytes, resorbing damaged bone matrix as well. Osteocyte apoptosis similarly activates bone resorption with estrogen loss and in disuse. Apoptotic osteocytes trigger viable neighbor (ie, bystander) osteocytes to produce RANKL, the cytokine required for osteoclast activation. Signals from apoptotic osteocytes that trigger this bystander RANKL expression remain obscure. Studying signaling among osteocytes has been hampered by lack of in vitro systems that model the limited communication among osteocytes in vivo (ie, via gap junctions on cell processes and/or paracrine signals through thin pericellular fluid spaces around osteocytes). Here, we used a novel multiscale fluidic device (the Macro-micro-nano, or Mμn) that reproduces these key anatomical features. Osteocytes in discrete compartments of the device communicate only via these limited pathways, which allows assessment of their roles in triggering osteocytes RANKL expression. Apoptosis of MLOY-4 osteocytes in the Mμn device caused increased osteocyte RANKL expression in the neighboring compartment, consistent with in vivo findings. This RANKL upregulation in bystander osteocytes was prevented by blocking Pannexin 1 channels as well as its ATP receptor. ATP alone caused comparable RANKL upregulation in bystander osteocytes. Finally, blocking Connexin 43 gap junctions did not abolish osteocyte RANKL upregulation, but did alter the distribution of RANKL expressing bystander osteocytes. These findings point to extracellular ATP, released from apoptotic osteocytes via Panx1 channels, as a major signal for triggering bystander osteocyte RANKL expression and activating bone remodeling. © 2020 American Society for Bone and Mineral Research.  相似文献   

13.
Bone cells actively respond to mechanical stimuli to direct bone formation, yet there is no current treatment strategy for conditions of low bone mass and osteoporosis designed to target the inherent mechanosensitivity of bone. Our group has previously identified the primary cilium as a critical mechanosensor within bone, and that pharmacologically targeting the primary cilium with fenoldopam can enhance osteocyte mechanosensitivity. Here, we demonstrate that potentiating osteocyte mechanosensing with fenoldopam in vitro promotes pro-osteogenic paracrine signaling to osteoblasts. Conversely, impairing primary cilia formation and the function of key ciliary mechanotransduction proteins attenuates this intercellular signaling cascade. We then utilize an in vivo model of load-induced bone formation to demonstrate that fenoldopam treatment sensitizes bones of both healthy and osteoporotic mice to mechanical stimulation. Furthermore, we show minimal adverse effects of this treatment and demonstrate that prolonged treatment biases trabecular bone adaptation. This work is the first to examine the efficacy of targeting primary cilia-mediated mechanosensing to enhance bone formation in osteoporotic animals. © 2022 American Society for Bone and Mineral Research (ASBMR).  相似文献   

14.
Osteocyte apoptosis is required to initiate osteoclastic bone resorption following fatigue-induced microdamage in vivo; however, it is unclear whether apoptotic osteocytes also produce the signals that induce osteoclast differentiation. We determined the spatial and temporal patterns of osteocyte apoptosis and expression of pro-osteoclastogenic signaling molecules in vivo. Ulnae from female Sprague-Dawley rats (16-18weeks old) were cyclically loaded to a single fatigue level, and tissues were analyzed 3 and 7days later (prior to the first appearance of osteoclasts). Expression of genes associated with osteoclastogenesis (RANKL, OPG, VEGF) and apoptosis (caspase-3) were assessed by qPCR using RNA isolated from 6mm segments of ulnar mid-diaphysis, with confirmation and spatial localization of gene expression performed by immunohistochemistry. A novel double staining immunohistochemistry method permitted simultaneous localization of apoptotic osteocytes and osteocytes expressing pro-osteoclastogenic signals relative to microdamage sites. Osteocyte staining for caspase-3 and osteoclast regulatory signals exhibited different spatial distributions, with apoptotic (caspase 3-positive) cells highest in the damage region and declining to control levels within several hundred microns of the microdamage focus. Cells expressing RANKL or VEGF peaked between 100 and 300μm from the damage site, then returned to control levels beyond this distance. Conversely, osteocytes in non-fatigued control bones expressed OPG. However, OPG staining was reduced markedly in osteocytes immediately surrounding microdamage. These results demonstrate that while osteocyte apoptosis triggers the bone remodeling response to microdamage, the neighboring non-apoptotic osteocytes are the major source of pro-osteoclastogenic signals. Moreover, both the apoptotic and osteoclast-signaling osteocyte populations are localized in a spatially and temporally restricted pattern consistent with the targeted nature of this remodeling response.  相似文献   

15.
Evidence suggests that osteocyte apoptosis is involved in the adaptive response of bone, although the specific role of osteocytes in the signaling mechanism is unknown. Here, we examined and correlated regional variability in indices of remodeling, modeling, osteocyte apoptosis, and osteocyte density in rabbit tibia midshafts. Histomorphometric analysis indicated that remodeling parameters (BMU activation frequency, osteon density, forming osteon density, and resorption cavity density) were lower in the cranial region compared to other quadrants. In addition, pericortical subregions displayed less remodeling relative to intracortical and endocortical ones. Modeling indices also demonstrated regional variability in that periosteal surfaces exhibited a greater extent of bone forming surface than endosteal ones across all anatomic quadrants. In contrast, endosteal surfaces demonstrated significantly greater surface mineral apposition rates compared to periosteal surfaces in caudal, medial, and lateral but not cranial quadrants. Using TUNEL analysis to detect osteocytes undergoing apoptosis, the density of apoptotic osteocytes was found to be lower in cranial quadrants relative to medial ones. In addition, the densities of osteocyte lacunae, empty lacunae, and total osteocytes were higher in lateral fields relative to caudal quadrants. There was a strong, statistically significant linear correlation between the remodeling indices and apoptotic osteocyte density, supporting the theory that osteocytes undergoing apoptosis produce signals that attract or direct bone remodeling. In contrast, the modeling parameters did not exhibit a correlation with apoptotic osteocytes, although there was a strong correlation between the modeling indices and the density of empty osteocyte lacunae, corroborating previous studies that have found that osteocytes inhibit bone formation. It was found that osteocyte density and osteocyte lacunar density did not significantly correlate with modeling or remodeling parameters, suggesting that cell viability should be examined in studies correlating bone turnover parameters with the functional role of osteocytes in bone adaptation.  相似文献   

16.
Reports of five young women who developed vertebral fractures associated with pregnancy and lactation are presented (Fig. 1). Ages ranged from 24 to 37 (mean 30) years. All five patients have osteoporosis with two to nine vertebral fractures at presentation postpartum. Bone mineral density (BMD) was measured by single-photon absorptiometry, quantitative computer tomography, and dual-energy X-ray absorptiometry. BMD of the trabecular bone was less than normal values and it remained apparently low even several years after pregnancy. Histological findings of bone biopsy identified the bone loss with increasing bone resorption. Our present findings suggest that postpregnancy osteoporosis affects mainly the trabecular bone site, and the patients might have low peak bone mass and poor reversibility probably due to a low rate of remodeling.  相似文献   

17.
18.
Summary In order to study trabecular bone remodeling in postmenopausal osteoporosis we compared bone biopsies of 44 osteoporotic women aged 50–70 to those of 23 nonosteoporotic women, matched for age, who had a bone biopsy during anesthesia for knee arthritis. Trabecular bone volume, mean wall thickness, osteoblastic surfaces, labeled surfaces, and bone formation rate were decreased in osteoporotic women compared with control women. The osteoclast number and the osteoclastic surfaces were the same in the two groups. The normal distribution of the histomorphometric static parameters in osteoporotic patients did not allow the separation of subgroups. These data indicate that decreased bone formations is a major contributing factor leading to trabecular bone loss in postmenopausal osteoporosis.  相似文献   

19.
The Bcl2 family proteins, Bcl2 and BclXL, suppress apoptosis by preventing the release of caspase activators from mitochondria through the inhibition of Bax subfamily proteins. We reported that BCL2 overexpression in osteoblasts using the 2.3 kb Col1a1 promoter increased osteoblast proliferation, failed to reduce osteoblast apoptosis, inhibited osteoblast maturation, and reduced the number of osteocyte processes, leading to massive osteocyte death. We generated BCLXL (BCL2L1) transgenic mice using the same promoter to investigate BCLXL functions in bone development and maintenance. Bone mineral density in the trabecular bone of femurs was increased, whereas that in the cortical bone was similar to that in wild‐type mice. Osteocyte process formation was unaffected and bone structures were similar to those in wild‐type mice. A micro‐CT analysis showed that trabecular bone volume in femurs and vertebrae and the cortical thickness of femurs were increased. A dynamic bone histomorphometric analysis revealed that the mineralizing surface was larger in trabecular bone, and the bone‐formation rate was increased in cortical bone. Serum osteocalcin but not TRAP5b was increased, BrdU‐positive osteoblastic cell numbers were increased, TUNEL‐positive osteoblastic cell numbers were reduced, and osteoblast marker gene expression was enhanced in BCLXL transgenic mice. The three‐point bending test indicated that femurs were stronger in BCLXL transgenic mice than in wild‐type mice. The frequency of TUNEL‐positive primary osteoblasts was lower in BCLXL transgenic mice than in wild‐type mice during cultivation, and osteoblast differentiation was enhanced but depended on cell density, indicating that enhanced differentiation was mainly owing to reduced apoptosis. Increased trabecular and cortical bone volumes were maintained during aging in male and female mice. These results indicate that BCLXL overexpression in osteoblasts increased the trabecular and cortical bone volumes with normal structures and maintained them majorly by preventing osteoblast apoptosis, implicating BCLXL as a therapeutic target of osteoporosis. © 2016 American Society for Bone and Mineral Research.  相似文献   

20.
J S Jahng  K S Kang  H W Park  M H Han 《Orthopedics》1991,14(10):1101-1105
The authors analyzed bone mineral density in 213 patients from January 1988 to September 1989. Bone mineral density of the vertebral body in the osteoporosis group of patients was compared with that in the normal group to investigate the correlation between bone mineral density and age distribution, and to estimate fracture threshold in the osteoporosis group. It was found that men, by linear regression, lose an average of 0.91% of bone per year, and women, by cubic regression, lose an average of 1.14% per year, accelerating at menopause. In the osteoporotic group, bone mineral density of men decreased an average of 29.7% compared with the non-osteoporotic group; that of women decreased an average of 29.9%. There was no difference between sexes. The fracture threshold of the osteoporotic patient was estimated to be about 90 mg/cm3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号