首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
In 1995 Laing et al. (Am J Hum Genet 56(1995)422) described a single family with nine members affected by an autosomal dominant infantile onset distal myopathy. This family generated a LOD score of 2.6 for a locus on chromosome 14. We describe two families with an infantile onset distal myopathy: a new family with four affected members and the family previously described by Scoppetta et al. (Acta Neurol Scand 92(1955)122) in both of which haplotype segregation was compatible with linkage to the same chromosome 14 locus, generating LOD scores of 0.9 at a penetrance of 100% for the markers D14S283 and D14S64 (theta=0) in both families. The loci for autosomal recessive hereditary inclusion body myopathy and Nonaka myopathy on chromosome 9 and for autosomal dominant distal myopathy of Markesberry-Griggs and Udd on chromosome 2q31-33 were excluded by linkage analysis. The disease followed a uniform course with selective wasting of the anterior tibial muscles, starting in infancy and recognizable by a characteristic clinical sign of the 'hanging big toe'. This was followed by slow progression, with involvement of the finger and wrist extensor muscles in the third decade and proximal limb muscles in the fourth decade. Interestingly, we also found evidence of an accompanying mild peripheral neuropathy in the oldest individual with hypomyelination of numerous large myelinated fibres. In addition, this patient's muscle biopsy also showed autophagic vacuoles and numerous intranuclear tubulo-filamentous inclusions of 15-20 nm diameter. Given that all three families with infantile onset distal myopathy are compatible with linkage to the same locus on chromosome 14, this study supports evidence for, and enlarges the clinical and neuropathological spectrum of the distal myopathy on chromosome 14.  相似文献   

2.
A dominantly inherited form of distal myopathy with onset in early childhood was first reported in a 4-generation Australian family in 1995. In the present report we provide further information on the clinical phenotype and natural history of this myopathy, and on the electromyogram and magnetic resonance imaging findings in affected individuals. The pattern of muscle involvement was similar to that in the 'tibial' forms of distal myopathy such as the Finnish (Udd) and Markesbery-Griggs types, with additional involvement of the finger extensors and of some more proximal limb and neck muscles. However, the age of onset was earlier than in these other myopathies and rimmed vacuoles were not found in biopsies from two affected individuals. Evidence of possible anticipation was found in one branch of the family. The gene locus for this myopathy had been mapped to 14q11.2-q13. The linkage region has been refined to a 24 cM region between D14S283 and D14S49 and mutations have been excluded in the PABP2 gene for oculopharyngeal muscular dystrophy which lies within this region.  相似文献   

3.
Tibial muscular dystrophy (TMD) or Udd myopathy is an autosomal dominant distal myopathy with late onset, at first described in the Finnish population. We report here the first Italian cases of TTN mutated titinopathy. The proband, a 60 year-old female, had the first muscular signs at the age of 59 years, with difficulty in walking and right foot drop. Muscle imaging showed selective fatty degenerative change in the anterior compartment of leg muscles. Her 67 year-old brother, started to show muscle weakness, pain at lower limbs and hypertrophy of calf muscles at the age of 66 years. Their mother began to show foot drop and impaired walking from the age of 60 years. Other relatives are reported to be affected in a similar way. Because the phenotype appeared compatible with TMD, we analyzed the TTN gene in the DNA of the proband and we identified a heterozygous mutation 293326A>C. This mutation is also present in the brother and in the other affected individuals of the same family. The mutation predicts a His33378Pro change located next to the previously known Belgian TMD mutation. The mutation was not found in 100 Italian control DNA samples. Then, since the introduction of a proline in the last domain of titin was previously known to cause TMD in French families, we can conclude that this missense mutation is the obvious pathogenetic mutation in the affected patients. No other disease causing mutations in the TTN gene have so far been reported in the Italian population.  相似文献   

4.
Distal myopathies   总被引:3,自引:0,他引:3  
Among various previously described distal myopathies, several diseases have now been established as clinically and genetically distinct entities. The most representative diseases are dominantly inherited Welander distal myopathy and tibial muscular dystrophy, and the recessively inherited distal myopathy with rimmed vacuoles and distal muscular dystrophy (Miyoshi myopathy). Since the discovery of the gene loci for several distal myopathies, several diseases previously categorized as different disorders have now proven to be the same or allelic disorders (e.g. distal myopathy with rimmed vacuoles and hereditary inclusion body myopathy, Miyoshi myopathy and limb-girdle muscular dystrophy with gene locus at 2p13). Except for Miyoshi myopathy, which has the typical findings of muscular dystrophy, most of the distal myopathies share the common pathologic features of myopathic changes with rimmed vacuoles. The pathologic changes are somewhat similar to those seen in chronic muscular dystrophy, but necrotic and regenerative processes are less prominent and creatine kinase levels are either normal or only mildly elevated. Further study is necessary to determine why rimmed vacuoles are so common in the distal myopathies, and what role they play in the pathogenesis of muscle fibre atrophy and loss, predominantly in the distal portions of the extremities.  相似文献   

5.
Critical Illness Polyneuropathy (CIP) and Myopathy (CIM), either singly or in combination, are a common complication of critical illness. Both disorders may lead to severe weakness and require mechanical ventilation. CIP, as initially described by Bolton et al., in 1984, is a sensorimotor polyneuropathy that is often a complication of sepsis and multiorgan failure. In Japan, Horinouchi et al., first reported a case in 1994. CIM has been referred to by a number of different terms (acute quadriplegic myopathy, thick filament myopathy, acute necrotizing myopathy of intensive care, rapidly evolving myopathy with myosin-deficiency fibers) in the literature. A variety of serious problems (e.g., pneumonia, severe asthma, and lung or liver transplantation) and the concomitant use of high-dose intravenous corticosteroids and nondepolarizing neuromuscular blocking agents predispose to CIM. In Japan, Kawada et al., reported a first case as acute quadriplegic myopathy in 2000. There is no specific treatment for CIP and CIM. Minimizing the use of corticosteroids and nondepolarizing neuromuscular blocking agents in a critical illness setting may prove helpful in preventing the occurrence of these disorders. The prognosis is directly related to the age of the patient and the seriousness of the underlying illness.  相似文献   

6.
The distal myopathies are clinically, pathologically and genetically heterogenous. Thus far, seven types of distal myopathy have been linked to four chromosome loci. We recently examined four affected members from three generations of an autosomal dominant distal myopathy kindred. A muscle biopsy was performed on the index case. Muscle histopathology showed non-specific myopathic findings including increased variation in fiber size and increased internalized nuclei. No abnormal inclusions or vacuoles were present. Microsatellite markers for the four distal myopathy loci on chromosomes 2, 9 and 14 were studied on affected and several unaffected family members. Affected patients developed distal weakness in anterior foreleg muscles followed by progressive distal upper and proximal lower extremity involvement. Chromosome 2, 9 and 14 regional markers were informative and demonstrated recombinations with affected individuals in the pedigree. The resulting LOD scores obtained from the multipoint analyses gave no evidence of positive linkage to any of the regions and positively excluded (LOD score less than -2) all, or virtually all, of the candidate regions examined. This autosomal dominant distal myopathy family does not show evidence of linkage to any of the known distal myopathy loci, suggesting the existence of at least one more distal myopathy locus. Furthermore, the clinical and pathological features appear distinct from other previously described but genetically-undetermined autosomal dominant distal myopathies.  相似文献   

7.
Myotonic dystrophy type 2   总被引:4,自引:0,他引:4  
Myotonic dystrophy type 2 (DM2) is a clinically but not genetically heterogeneous, multisystem disorder, that is clinically similar to, but distinct from myotonic dystrophy type 1 (DM1). Initially, different phenotypes of DM2 were described by Ricker (proximal myotonic myopathy, PROMM), Ranum (myotonic dystrophy 2, DM2) and Udd (proximal myotonic dystrophy, PDM). Clinical features these three phenotypes had in common were diffuse, proximal or distal weakness, wasting, myotonia, cataract, cerebral, endocrine and cardiac abnormalities. Initially, the clinical differences between DM1 and PROMM seemed unmistakable, but meanwhile it has become apparent that the clinical differences between these entities are blurring. In 1999, Day et al., Meola et al. and Ricker et al. mapped the mutated gene of all three phenotypes to chromosome 3q. In 2001, the three different phenotypes were found to rely on the same mutation in the ZNF9 gene on chromosome 3q21.3. Although DM2 may be clinically heterogeneous, it is by result of a mutation in a single gene. The mutation responsible for DM2 is a CCTG-repeat expansion of 75-11 000 repeats in intron 1 of the ZNF9 gene on chromosome 3q21.3. Because of the clinical heterogeneity, the diagnosis of DM2 should rely on DNA analysis alone.  相似文献   

8.
In this study we describe an autosomal dominant distal muscular dystrophy in a small Austrian family. The myopathy started in early adulthood with a slowly progressive weakness of the muscles of the anterior tibial compartment, followed by the long finger extensors and sternocleidomastoids in some family members. Other muscles were spared. Histopathology showed fiber size variation and autophagic vacuoles. This disease pattern is similar to Laing distal myopathy, which has been described previously in only one other family.  相似文献   

9.
10.
Transmissible spongiform encephalopaties are caused by an extracellular surface protein, the scrapie prion protein (PrPsc), which is an aberrant form of normal and functional cellular PrP (PrPc). The pathological hallmarks of these diseases are the accumulation and deposition of PrPsc in the form of amyloid fibrils in the central nervous system (Tateishi et al., 1988), similar to amyloid-beta (Abeta) protein in Alzheimer's disease (AD). In some patients, Abeta and prion pathology can coexist (Hainfellner et al., 1998), and a common spatial pattern of protein deposition has been described (Armstrong et al., 2001). In addition, it is well-known that acetylcholinesterase (AChE) colocalizes with Abeta deposits of brains in AD patients and accelerates assembly of Abeta peptides through the peripheral site of the enzyme (Inestrosa et al., 1996). The aim of the present study was to analyze time course and concentration dependence of the AChE proaggregating effect on synthetic peptide-spanning residues 106-126 of human PrP (PrP106-126) and the reversion of this effect by different AChE inhibitors (AChEIs).  相似文献   

11.
We report the clinical and genetic characteristics of a five-generation family (MN1) with an unusual form of myotonic dystrophy (DM). Affected individuals have clinical features that are similar to DM including myotonia, distal weakness, frontal balding, polychromatic cataracts, infertility and cardiac arrhythmias. Genetic analyses reveal that affected individuals do not have the CTG expansion associated with DM, nor is the disease locus linked to the DM region of chromosome 19. We have also excluded the MN1 disease locus from the chromosomal regions containing the genes for the muscle sodium (alpha- and beta-subunits) and chloride channels, both of which are involved in other myotonic disorders. We have recently mapped the disease locus (DM2) in this family to a 10 cM region of chromosome 3q [Ranum LPW, Rasmussen PF, Benzow KA, Koob MD, Day JW. Nat Genet 1998;19:196-198]. The genetically distinct form of myotonic dystrophy in the MN1 kindred shares some of the clinical features of previously reported families with proximal myotonic myopathy (PROMM). The size of the MN1 family (25 affected individuals) makes it a unique resource for both clinical and genetic studies. This second form of myotonic dystrophy may help resolve the confusion that remains about how the CTG repeat expansion in the 3' untranslated portion of the myotonin protein kinase gene causes the multisystem involvement of DM.  相似文献   

12.
Distal myopathy with rimmed vacuoles is an autosomal recessive muscular disorder, characterized clinically by weakness of the distal muscles in the lower limbs in early adulthood. Recently, the gene locus for familial vacuolar myopathy with autosomal recessive inheritance (hereditary inclusion body myopathy) was mapped to chromosome 9 by genome-wide linkage analysis of nine Persian-Jewish families. Since both disease conditions share similar clinical, genetic, and histopathological features, we analyzed seven families with distal myopathy with rimmed vacuoles using ten microsatellite markers within the region of the hereditary inclusion body myopathy locus. Significantly high cumulative pairwise lod scores were obtained with three markers: D9S248 (Zmax = 5.90 at Θ = 0), D9S43 (Zmax = 5.25 at Θ = 0), and D9S50 (Zmax = 4.23 at Θ = 0). Detection of obligate recombination events as well as multipoint linkage analysis revealed that the most likely location of the distal myopathy with rimmed vacuoles gene is in a 23.3-cM interval defined by D9S319 and D9S276 on chromosome 9. The results raise the possibility that distal myopathy with rimmed vacuoles and hereditary inclusio body myopathy in Persian Jews are allelic diseases.  相似文献   

13.
In 1974, Markesbery et al. thoroughly characterized and reported a large kindred with distal muscle weakness of late adult-onset that was autosomal dominantly inherited. Clinical evidence supported myopathy rather than the usual neuropathy expected with distal weakness. Postmortem examination of two patients documented myopathy and excluded anterior horn cell disease or peripheral neuropathy as the cause. Distinctive morphologic changes were present in muscle. Widely accepted as a distinct disease entity, this disorder has recently been characterized as one of a group of myofibrillar myopathies resulting from mutations in several muscle proteins. Studies of members of the original family have now identified the molecular defect to be a mutation in ZASP, Z-band alternatively spliced PDZ-motif-containing protein. The specific mutation, A165V, was identified in all clinical affected family members by direct sequencing. Thus, Markesbery disease is a zaspopathy. Other families have been identified with the same mutation and a shared haplotype indicating a founder effect.  相似文献   

14.
ABSTRACT

The current study replicates the design and findings of earlier studies examining an EEG measure called the Consistency Index (CI) as a physiological measure of ADHD (Cox et al., 1998; Cox, Merkel, Kovatchev, & Seward, 2000; Kovatchev et al., 2001) and medication response (Merkel et al., 2000). Six males diagnosed with ADHD between the ages of 16 and 19 were examined in this study. The average CI for participants while off of medication was 26%, indicative of ADHD (CI < 40% strong likelihood of ADHD). These CI readings changed significantly when the participants were on therapeutic dosages of methylphenidate. Five of six participants demonstrated a CI > 50%, which is similar to the CI of an individual with no ADHD (Cox et al., 1998, 2000; Kovatchev et al., 2001). Overall, the average CI when on an effective dose of methyl-phenidate was 57% (CI > 50% strong likelihood of no ADHD). These changes in overall CI were statistically significant (p < 0.05) and demonstrate exciting possibilities for the utility of the CI as a physiological marker of ADHD.  相似文献   

15.
Ionotropic P2X receptors for ATP are formed, to date, by seven different subunits named P2X (Torres et al., 1999; Cunha and Ribeiro, 2000; North and Surprenant, 2000; Pintor et al., 2000; Hervás et al., 2003; Miras-Portugal et al., 2003; Illes and Ribeiro, 2004), which are cloned from various mammalian species (Illes and Ribeiro, 2004). These subunits can occur as homo- or hetero-oligomeric assemblies of more than one subunit (North and Surprenant, 2000), except P2X (Miras-Portugal et al., 2003) receptor, which has been described not to coassemble with other subunits (Torres et al., 1999). They are abundantly expressed in the peripheral and central nervous systems and exhibit high permeability to Ca2+ ions (Cunha and Ribeiro, 2000). The existence of presynaptic ionotropic receptors for nucleotides, either for ATP or dinucleotides, has been reported in isolated synaptic terminals from mammalian brain, and both exhibit good permeability to Ca2+ ions (Pintor et al., 2000; Hervás et al., 2003; Miras-Portugal et al., 2003). Studies on isolated single terminals have confirmed the existence of independent and specific responses to ATP and dinucleotides on the same or different terminals (Miras-Portugal et al., 1999; Díaz-Hernández et al., 2002; Hervás et al., 2005; Sánchez-Nogueiro et al., 2005). The activation of presynaptic ionotropic nucleotide receptors can induce the release of other neurotransmitters such as acetylcholine, glutamate, or GABA. In these specific terminals, ionotropic nucleotide receptors can be modulated by interaction with metabotropic receptors, such as GABAB and adenosine receptors (Khakh and Henderson, 1998; Gómez-Villafuertes et al., 2001), and ionotropic, such as nicotinic cholinergic receptors (Díaz-Hernández et al., 2004; Sánchez-Nogueiro et al., 2005). Here, we discuss a relevant finding on the interaction between ionotropic nucleotide and nicotinic receptors in cholinergic synaptic terminals and the role of CaCMKII in this interaction.  相似文献   

16.
BACKGROUND: Mutations in the dysferlin (DYSF) gene cause 3 different phenotypes of muscular dystrophies: Miyoshi myopathy, limb-girdle muscular dystrophy type 2B, and distal anterior compartment myopathy. OBJECTIVE: To present the results of clinical and molecular analysis of 8 patients with dysferlinopathy from 5 unrelated families. DESIGN: Clinical assessment was performed with a standardized protocol. A muscle biopsy specimen was obtained and studied by immunohistochemistry. Genetic analysis was performed using single-stranded conformation polymorphism and direct sequencing of genomic DNA. RESULTS: All the patients presented the R1905X mutation in the DYSF gene in homozygosity, and the haplotype analysis at the DYSF locus revealed that it was a novel and founder mutation. A C-to-T transition at nucleotide position 6086 changes an arginine into a stop codon, leading to premature termination of translation. This mutation was expressed as 3 different clinical phenotypes (limb-girdle muscular dystrophy type 2B, Miyoshi distal myopathy, and distal anterior dysferlinopathy), but only 1 phenotype was found in the same family. CONCLUSIONS: The new R1905X DYSF founder mutation produced the 3 possible dysferlinopathy phenotypes without intrafamilial heterogeneity. This homogeneous population in Sueca, Spain, should be helpful in studying the modifying factors responsible for the phenotypic variability.  相似文献   

17.
In 1977 Wijngaarden et al. reported a Dutch family with a congenital myopathy characterized by external ophthalmoplegia and a remarkable histological feature, focal loss of cross-striations. A small number of other families with similar clinical and pathological features led to the consideration of this congenital myopathy as a distinct entity. Here we present more than 30 years of follow-up from the Dutch family and report recently identified compound heterozygous mutations in the skeletal muscle ryanodine receptor (RYR1) gene, c.10627-2A>G and p.Arg3539His (c.10616G>A). Focal loss of cross-striations on muscle biopsy is another histopathological feature that should raise the possibility of RYR1 involvement.  相似文献   

18.
Rapid secretion relies on the occurrence of spike-like Ca2+ transients in active zones (Llinás et al., 1992; Yazejian et al., 2000; Dunant and Bloc, 2003). Presynaptic Ca2+ nanodomains are to be restricted both in time and in space as to assure rapid onset and termination of transmitter release (Llinás et al., 1992; Pozzan et al., 1994; Yazejian et al., 2000; Dunant and Bloc, 2003). A very fast Ca2+-buffering mechanism should allow Ca2+ rise above approximately 100 microM for less than approximately 250 micros and then rapid reduction of Ca2+ to subthreshold levels of release (Llinás et al., 1992; Pozzan et al., 1994; Yazejian et al., 2000; Dunant and Bloc, 2003). Swift Ca2+ clearance by vesicular Ca2+/H+ antiport as a low-affinity, high-capacity extrusion mechanism was postulated in the past (Pozzan et al., 1994; Dunant and Bloc, 2003). We demonstrated pH gradient (DeltapH)-dependent Ca2+ uptake by mammalian brain synaptic vesicles (Gon?alves et al., 1998, 2000). Moreover, this antiport activity is effective at [Ca2+] ranging from approximately 100 to 800 microM (max. at approximately 500 microM) (Gon?alves et al., 1998, 2000). We now show that the time course of acetylcholine (ACh) secretion in Torpedo neuroelectrocytic synapse is modified by bafilomycin A1 (baf.), which compromises antiport activity. Along with this mechanism, synaptic vesicles also have a P-type Ca2+ ATPase, exhibiting half-maximal activation for 0.6 microM Ca2+ (Gon?alves et al., 2000). Here, we demonstrate the role of P-type Ca2+ ATPase in preventing desensitization of the release mechanism by inhibiting it with orthovanadate.  相似文献   

19.
We report an Italian family with autosomal recessive quadriceps-sparing inclusion-body myopathy (ARQS-IBM). The patients (two second cousins) developed a slowly progressive distal and proximal myopathy with complete sparing of the quadriceps. Muscle biopsy showed rimmed vacuoles in numerous muscle fibers, and electron microscopy documented accumulation of 15–21 nm filaments, DNA analysis established linkage to 9p1 and haplotype analysis revealed that the patients shared a recombined common haplotype. The gene locus of ARQS-IBM was initially mapped to chromosome 9p1-q1 in families of Iranian-Jewish origin and later confirmed in a few other ethic groups. This is the first report of Italian patients with ARQS-IBM showing positive linkage to chromosome 9p1. Our data suggest that patients having distal and proximal myopathy with rimmed vacuoles and possible recessive inheritance, often classified as distal myopathies, should be thoroughly investigated according to the diagnostic criteria of h-IBM and, when positive, studied for linkage to chromosome 9p1. Received: 8 February 2000 / Accepted in revised form: 6 April 2000  相似文献   

20.
Summary Muscle biopsies from four patients were studied histochemically and electron-microscopically: they had myopathy of juvenile or early-adult onset, in which distal limb muscles were most severely affected but muscles supplied by cranial nerves were spared. Common histochemical findings included variation in fiber size, necrosis, phagocytosis, fiber splitting, central nuclei, endomysial fibrosis, and particularly rimmed vacuoles. Electron-microscopic examination revealed frequent autophagic vacuoles with numerous myeloid bodies. In addition, sarcoplasmic inclusion bodies with periodically laminated structures similar to the tubulomembranous structures (TMSs) first described by Fukuhara et al. (1981) in an atypical myopathy were found in all four cases, and in one, there were fingerprint-like structures resembling those described in neuronal ceroid-lipofuscinoses. These inclusions occasionally contained areas resembling lipofuscin pigment. They are certainly residual bodies of lysosomal origin, which might be related to the rimmed-vacuolar degeneration of the muscle, but whether or not they represent some specific metabolic abnormalities seems to remain an open question since the present cases differed clinically from either of the atypical myopathies with TMSs (Fukuhara et al. 1981) or any type of neuronal ceroid-lipofuscinosis.Supported by grants no. 81-08-20 and no. 82-04-32 from the National Center for Nervous, Mental, and Muscular Disorders (NCNMMD) of the Ministry of Health and Welfare, Japan  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号