首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 984 毫秒
1.
通过将挂膜成功后的厌氧/缺氧序批式移动床生物膜反应器(A/A-SBMBBR)与硝化序批式移动床生物膜反应器(N-SBMBBR)连通成A2N序批式MBBR系统(A2N-SBMBBR双泥系统),运用该双泥系统探讨了移动床生物膜反应器对实际生活污水的反硝化除磷效能。在COD/TN平均值为2.98,单个运行周期为12 h的试验条件下,对COD、TN和TP的平均去除率分别为76.24%、72.5%和61.86%,其中TN、TP去除率最高分别达到77.86%和76.14%,系统发生的反硝化除磷现象表明,A2N-SBMBBR双泥系统对实际低COD/TN生活污水有较好的处理效果。  相似文献   

2.
悬浮填料对污水脱氮的影响分析   总被引:1,自引:0,他引:1  
通过同步硝化反硝化,以悬浮填料为载体的生物反应器可以有效完成单级生物脱氮.对影响这一过程的主要因素进行了考察,在室温条件下,当进水NH 4-N浓度为100 mg/L时,溶解氧DO(dissdved oxygen,DO)为2.5~3.5 mg/L,COD/NH 4-N质量比为12∶1,pH值为8 左右时获得最佳的脱氮效果,总氮TN(Total Nitrogen,TN)的去除率在80%~90%.实验还发现当进水NH 4-N浓度从100 mg/L直接升高至200 mg/L时,去除率从90%降至60%左右.可见反应器对高氨氮废水的适应性有待进一步研究.  相似文献   

3.
为了研究反硝化除磷过程中的脱氮除磷特性,采用厌氧/缺氧和硝化序批式MBBR系统(A2N-SBMBBR系统),在COD/TN平均值为2.98,单个运行周期为12 h的实验条件下,分析了单个代表性周期内反硝化除磷过程中三氮、TP和有机物的降解规律,并研究了A2N-SBMBBR系统单个代表性周期中DO、ORP和p H沿程变化规律。结果表明,在A2N-SBMBBR系统中实现了反硝化除磷现象,脱氮、除磷效率分别达到77.86%和76.14%;COD主要在厌氧和硝化阶段去除,TN主要在硝化和缺氧阶段去除,在硝化序批式MBBR中出现了同步硝化反硝化现象,在系统运行的缺氧阶段中,有一部分反硝化聚磷菌可以利用亚硝酸盐作为电子受体进行反硝化吸磷反应;厌氧、缺氧阶段DO控制在0.2 mg·L-1以下较为合适。  相似文献   

4.
采用移动床生物膜反应器(MBBR)对垃圾焚烧厂渗滤液进行有机物去除和脱氮特性研究,考察了缺氧/好氧(A/O)池容比、硝化液回流比和温度对COD和氨氮去除效果的影响。结果表明,MBBR的最佳运行条件为池容比A/O 1∶3、硝化液回流比300%、室温25℃。在该运行条件下稳定运行,MBBR工艺对COD和氨氮的平均去除率达到64%和97%,能够实现对高浓度氨氮的有效去除。经过好氧MBBR处理后,垃圾渗滤液的COD和氨氮显著降低,可满足深度处理单元的进水水质要求,表明MBBR工艺在处理垃圾渗滤液方面具有显著优势。  相似文献   

5.
在不同的供氧模式下,研究了SBR法处理低碳源城市污水同步硝化反硝化(SND)过程中DO、ORP和pH的变化规律.试验结果显示,在恒定气量连续曝气反应过程中,DO、ORP和pH曲线上均出现了预示SND结束而完全硝化过程开始的折点,且经由SND过程的TN去除率随曝气量降低而增加;在恒定气量具有不同曝气百分数(AF)的间歇曝气模式下,随AF降低,DO、ORP和pH曲线上不仅没有出现折点而且均呈现趋于平直、稳定的趋势,经由SND过程的TN去除率相应增加;在恒定DO浓度连续曝气的模式下,随DO浓度从2.0 mg/L降低至0.5 mg/L时,ORP和pH值的波动变化逐渐趋于稳定且SND的脱氮效率也随之增加.通过对以上三种供氧模式下的试验结果进行分析,得出具有低AF的间歇曝气和恒定、适宜、低DO浓度范围的连续曝气两种模式,不仅有利于低碳源城市污水SND过程的稳定,而且还可节省曝气量.  相似文献   

6.
针对中等含氮废水的处理进行了SBR法脱氮的研究.试验结果表明:在COD/N为5.5~7,溶解氧为2.5 mg/L时系统处于最佳运行状态.亚硝化状态与温度的变化表现出了一定的相关性.在反应器中存在着复杂的脱氮途径,实现了亚硝酸型同步硝化反硝化(SND)工艺,并且存在明显的好氧反硝化菌的脱氮作用.  相似文献   

7.
利用序批式反应器成功培养出好氧颗粒污泥,并对最佳工艺条件进行了研究.采用气泵和砂芯曝气头供气,通过气体转子流量计控制曝气量,曝气量为0.20m3/h,沉降时间为20~30min,温度为室温,在12~22℃的范围内变化,pH值为7.0±0.1.进水NH4+-N和TP浓度分别为200mg/L,60mg/L,COD容积负荷为5.87kg COD/(m3.d).对COD、TP去除率分别达到90%和83%,对NH4+-N去除率达87%.  相似文献   

8.
异养硝化菌提高好氧颗粒污泥脱氮效率的试验研究   总被引:1,自引:0,他引:1  
通过人工配置污水,研究兼性细菌较多的活性污泥.首先在进水NH4-N浓度为200mg/L,COD浓度为1000 mg/L,溶解氧10.0 mg/L条件下筛选培养出好氧异养菌占优的脱氮性能较强的活性污泥.然后通过控制SBR反应器曝气量(溶解氧先后为2 mg/L、6 mg/L、2 mg/L),创造利于某些好氧异养硝化菌生长的...  相似文献   

9.
为考察曝气策略对硝化颗粒污泥形成的影响,采用三个柱状SBR反应器考察了大曝气量、小曝气量及往复调换曝气策略对硝化颗粒污泥形成的影响,分析了污泥特性及污染物的去除效果。结果表明,曝气策略影响硝化颗粒污泥的形成过程及短程硝化特性的产生,但对COD的去除效果影响不大。运行至90 d时,R1、R2及R3反应器内的污泥浓度及粒径分别为4.86、3.49和4.03 g獉L-1及660.87、694.89和489.91μm。三个反应器的COD去除率均在80%~85%,但氨氮的去除效果与进水氨氮浓度有关。采用间歇式往复曝气方式(R2)及较小的曝气方式(R3)有利于短程硝化颗粒污泥的形成,而采用长期较大曝气运行方式(R1)则不利于短程硝化颗粒污泥形成。  相似文献   

10.
组合材料PRB技术处理硝酸盐废水实验研究   总被引:1,自引:0,他引:1  
通过硝酸盐溶液浸泡玉米秸秆腐解实验、正交实验,确定PRB反应器的最佳工艺:pH=7,硝酸盐溶液质量浓度为45mg/L,反应时间为360min,质量比Fe∶C为4∶1.按最佳工艺进行PRB模拟实验,研究以Fe0—玉米秸秆的组合材料处理硝酸盐废水,探讨分析Fe0—玉米秸秆组合材料去除硝酸盐的机理.结果表明:Fe0还原NO3-,消耗溶解氧,腐解玉米秸秆可有效地释放碳源物质及反硝化菌生长的有机物,通过化学和生物反硝化去除NO3-—N并降低副产物NH4+—N浓度.反应器运行72h后,对NO3-—N去除率达到80%,TN去除率达到75%.  相似文献   

11.
针对好氧颗粒污泥形成的速度及稳定性问题,研究了网板式SBR反应器结构以及系统内曝气量对好氧颗粒污泥形成的影响.在反应器内架设直径为16cm、孔径为8mm、孔间距为5mm且水平串联的网板,其中网板间距为20cm,在不同的反应器中保证网板及其他因素不变的条件下,改变反应器内的曝气量.试验结果表明:加设网板的SBR反应器内形成的好氧颗粒污泥较传统的SBR更为快速稳定,颗粒粒径可稳定在3.0~5.0mm之间,且对TP、氨氮、COD等的去除率均可达到90%以上,提高了5%;当网板式SBR中曝气量保持在0.5m3/h时,颗粒形成及去除效果最好.  相似文献   

12.
采用充水期内交替轮换曝气-厌气及两次进水的方法,对城市污水进行硝化和反硝化脱氮.为了探求最优的操作运行决策,本文对间歇活性污泥法硝化及脱氮过程作模拟分析,讨论了31种运行方案与决策,分析了各种影响因素,提供最适宜的运行方式.采用AN-A-AN-A交替轮换厌气-曝气法进水,在充水结束前实现有机氮、氨氮、氧化氮同步降低的过程,从而获得最优的处理效果.采用两次充水的方法效果比充水期内交替轮换厌气-曝气的运行效果差。  相似文献   

13.
研究了SBR法净化生化制药发酵生产废水的方法。在SBR法处理生化制药发酵生产废水过程中,宜采用限制曝气进水;在容积负荷为0.9—2.1KgCOD/m^3·D,限制曝气进水时间1h,COD的去除率均高达93%,出水COD〈100mg/L,低于GB8978—1996的排放标准。  相似文献   

14.
在SBR反应器中安装纳米活性碳纤维处理生活污水,进行正常负荷与有机冲击负荷的对比试验,并对生物相进行追踪观察.结果表明:正常负荷运行时,生物膜上的微生物种类多、活性大;出水COD去除率均在90%以上;NH3—N和TP去除率分别在95%以上和72%~85.5%之间,均能达到城镇污水处理厂污染物排放标准(GB18918-2002)中一级A标准要求.系统抗有机冲击负荷的能力强,在提高进水COD浓度3~4倍的情况下,去除率仍保持在86%以上;有机冲击负荷对脱氮效果影响较小,对总磷的去除率下降幅度较大.  相似文献   

15.
在序批式反应器中,水平放置孔径8 mm、直径68 mm的网板,利用网板改变流体条件,成功培养出稳定均匀的好氧颗粒污泥.研究网板对好氧颗粒污泥形成及性能的影响,并考察常温下颗粒污泥对COD、NH4+—N、TP的去除性能,分别为90%、87%、83%,去除效果较好.  相似文献   

16.
采用IC(厌氧内循环)法,通过自行研制的IC反应器,研究了马铃薯淀粉废水处理效果,结果表明:初次启动历时25 d,二次启动仅仅历时6d,COD去除率均可保持在80%以上;反应器所能耐受的最大有积负荷为40.57 kg COD/(m3·d);最经济有效的停留时间为5h,最佳负荷为28.75 kg COD/(m3·d).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号