首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 379 毫秒
1.
研究了纳米羟基磷灰石/聚碳酸酯(n-HA/ PC)生物复合材料在模拟体液(SBF)中的表面变化,并用傅里叶红外光谱(FTIR) 、X射线衍射仪(XRD)和扫描电子显微镜(SEM)对材料的表面变化进行了分析。结果表明,n-HA/PC生物复合材料在模拟体液(SBF)中浸泡后,表面会沉积碳酸化羟基磷灰石(CHA),随着浸泡时间的延长,沉积层变厚,CHA晶体形貌变得规整。对n-HA/PC复合材料进行了细胞实验,通过四唑盐(MTT)检测和扫描电镜观察,表明n-HA/PC复合材料无细胞毒性,细胞形态正常,是一种有应用前景的可承力骨修复替代材料。   相似文献   

2.
通过纳米羟基磷灰石/聚酰胺66(n—HA/PA66)复合材料体外模拟体液(SBF)浸泡实验,以聚酰胺66(PA66)为对照,用IR、XRD、SEM和ICP等手段对材料的表面组成和形貌变化进行了分析,比较了PA66和n-HA/PA66复合材料的表面生物活性。结果表明,n-HA/PA66复合材料在SBF中其表面形成的HA沉积物为部分碳酸基团取代的磷灰石,而PA66在浸泡过程中Ca、P不在聚合物表面沉积;n-HA/PA66复合材料具有良好的生物活性,作为骨组织修复或替代材料具有较高的研究和应用价值。  相似文献   

3.
王凤彪  狄士春 《材料保护》2011,44(7):11-13,53
在钛及钛合金表面生成羟基磷灰石(HA)来制备生物材料是医学应用中亟待解决的问题。利用微弧氧化工艺在Ti合金表面制备了HA膜,研究了膜层在模拟体液中浸泡前后的形貌、相结构、Ca与P原子分数比,并分析了膜层在模拟体液中的降解和沉淀机制以及浸泡后的耐磨性。结果表明:膜层在模拟体液中随浸泡时间延长而逐渐变厚;浸泡20d后膜层中...  相似文献   

4.
利用扫描电镜、X射线衍射仪、红外漫反射仪,以及对β-磷酸三钙/聚乳酸组织工程支架在模拟体液(SBF)中失重率和模拟体液pH值的变化的测试,系统研究了聚乳酸组织工程支架在模拟体液中的降解和矿化性能。结果发现,随着β-磷酸三钙/聚乳酸组织工程支架在模拟体液中浸泡时间的增长,模拟体液的pH值有下降趋势;支架材料的质量是降解和矿化作用共同影响的结果。X射线衍射图谱和红外光谱(FT-IR)漫反射图谱研究表明,浸在SBF中的支架表面有磷灰石沉积物出现,且沉积物与β-磷酸三钙的晶型相似。  相似文献   

5.
以4 , 4′-亚甲基二环己基二异氰酸酯( H12MDI) 、聚乙二醇、蓖麻油、1 , 4-丁二醇和具有生物活性的纳米羟基磷灰石(n-HA) 为原料, 采用预聚法制备了纳米羟基磷灰石/ 聚氨酯( HA/PU) 复合材料, 并对其力学性能和热性能进行了研究。结果表明: 复合材料的拉伸强度和断裂伸长率随n-HA 含量的增加而提高。当n-HA 的质量百分数为30 %时, 复合材料的综合力学性能达到最佳, 与纯PU 相比, 拉伸强度和断裂伸长率分别提高了186 %和107 %。动态力学分析得出复合材料的储能模量随n-HA 质量百分含量的增加而显著上升。TGA 试验表明HA/PU 纳米复合材料的热稳定性能随n2 HA 的添加得到改善, 而DSC 分析显示n-HA 的加入在一定程度上降低了PU 软段的结晶度。这些结果均表明该n-HA/PU 是一种有应用前景的组织工程材料。   相似文献   

6.
利用扫描电镜、X射线衍射仪、红外漫反射仪,以及对β-磷酸三钙/聚乳酸组织工程支架在模拟体液(SBF)中失重率和模拟体液pH值的变化的测试,系统研究了聚乳酸组织工程支架在模拟体液中的降解和矿化性能。结果发现,随着β-磷酸三钙/聚乳酸组织工程支架在模拟体液中浸泡时间的增长,模拟体液的pH值有下降趋势;支架材料的质量是降解和矿化作用共同影响的结果。X射线衍射图谱和红外光谱(FT-IR)漫反射图谱研究表明,浸在SBF中的支架表面有磷灰石沉积物出现,且沉积物与β-磷酸三钙的晶型相似。  相似文献   

7.
采用共沉淀法合成磷酸镁, 将磷酸镁(MP)、聚丁二酸丁二醇酯(PBS)和小麦蛋白(WP)进行复合, 制备出MP/PBS/WP复合骨修复材料。通过体外降解、生物活性以及细胞培养等实验对复合材料的理化性能及细胞相容性进行了研究。结果显示: MP/PBS/WP复合材料在Tris-HCl缓冲液中浸泡10 d后, 溶液pH从7.4上升至7.51, 浸泡12 w后, 其降解率达到58.43wt%; 复合材料在模拟体液中浸泡10 d后, 其表面形成磷灰石层; 复合材料能促进MC3T3-E1细胞的增殖与分化。结果表明: MP/PBS/WP复合材料具有优良的降解性、生物活性和细胞相容性, 有望成为一种新型骨修复材料。  相似文献   

8.
采用超声分散技术,以聚(D,L)-乳酸(PDLLA)和纳米羟基磷灰石(HA)为原料,制备出PDLLA/HA杂化材料,研究了PDLLA/HA杂化材料在生理盐水中的降解性能,并对相关产物进行了FT-IR、TEM、XRD分析。结果表明,杂化材料中PDLLA与HA间通过氢键结合,随着HA含量的增加,杂化材料在生理盐水中的降解速率减缓,此外,杂化材料的降解包括PDLLA的降解和HA的重新沉积钙化两个过程,降解12周后,HA的晶体结构被破坏,重新沉积钙化形成多孔骨骼结构。  相似文献   

9.
医用纳米羟基磷灰石/聚酰胺66复合材料体外浸泡行为研究   总被引:10,自引:1,他引:9  
将纳米羟基磷灰石/聚酰胺66复合材料(n-HA/PA66)和纯PA66分别浸泡于去离子水、生理盐水、小牛血清和人血清中,于37℃恒温,l~12周取样,测试材料的吸水率、重量变化以及浸泡液中Ca、P含量变化,并对材料表面作扫描电镜(SEM)观察。结果显示不同浸泡环境中材料的行为有所不同。n-HA/PA66复合材料较纯PA66吸水率低,稳定性好,活性提高。扫描电镜显示在血清中复合材料表面形成大量颗粒状沉积物。n-HA/PA66复合材料在几种浸泡介质中均表现出良好的稳定性和生物活性。  相似文献   

10.
系统研究了含有聚乳酸-聚乙二醇-聚乳酸嵌段共聚物(PLA-PEG-PLA)的聚乳酸组织工程支架在模拟体液(SBF)中的降解和生物矿化性能。通过研究可以得到如下结论:随着含有PLA-PEG-PLA共聚物的聚乳酸组织工程支架在模拟体液中浸泡时间的增长,模拟体液的pH值有下降趋势;支架材料的质量有升有降,是降解和矿化作用共同影响的结果。X射线衍射图谱和FT-IR漫反射图谱研究表明,浸在SBF中的支架表面有磷灰石沉积物出现,并且PLA-PEG-PLA共聚物降解速度比PLA快。  相似文献   

11.
The nano-sized hydroxyapatite (n-HA) was incorporated into poly(d,l-Lactide) (PDLLA) to form a bioactive and biodegradable composite for application in hard tissue replacement and regeneration. Thin film of PDLLA composite containing 20 mass% of n-HA fillers was successfully developed through integration of solvent co-blending and hot pressing techniques. firstly, n-HA and PDLLA were chemically synthesized, respectively, then mixed together and homogeneously dispersed in N,N-dimethyl formamide(DMF) solvent, finally, the dried blended hybrid containing PDLLA matrix and n-HA fillers was put into the mould and compacted by hot-pressing machine under 8 MPa pressure at 110 °C for 15 min. In vitro studies were conducted using the simulated body fluid(SBF). Composite specimens were soaked in SBF from 1 day to 21 days prior to surface analysis. Results obtained from scanning electron microscopy(SEM) examination, Energy dispersive X-ray detector(EDX) analysis and X-ray diffraction (XRD) analysis showed that a layer of non-stoichiometric apatite formed within 7 days on HA/PDLLA composite surface after its immersion in SBF, demonstrating moderate in vitro bioactivity of n-HA/PDLLA composite, though a moderate rate of apatite formation in SBF was found on initial stage of immersion periods for n-HA/PDLLA composite, compared to the other biomaterial composite. This type of composite film exhibited certain desirable bioactive characteristics, and they are promising bone candidates to develop novel bioactive composites for biomedical application.  相似文献   

12.
采用溶解共混法制备含30%硅灰石的聚乳酸/硅灰石新型生物医用复合物膜.将其放入37.5℃模拟体液中,分别在1,3和6d取出样品,从沉积物形成速度以及沉积物的量考察复合物的生物活性,并与目前研究应用较多的聚乳酸/羟基磷灰石、聚乳酸/磷酸三钙以及聚乳酸/珍珠层粉进行比较。扫描电镜和红外光谱分析表明,聚乳酸/硅灰石、聚乳酸/羟基磷灰石和聚乳酸/磷酸三钙复合物膜的生物活性明显优于聚乳酸/珍珠层粉,这三种复合物膜表面在浸泡一天时表面出现类骨羟基磷灰石沉积物,6d时表面完全被沉积物覆盖。聚乳酸/硅灰石复合物材料具有较好的生物活性,适于应用在骨修复以及骨组织工程领域。  相似文献   

13.
Hydroxycarbonate apatite (HCA) coatings on the surface of bioresorbable materials for bone tissue engineering scaffolds were produced using macroporous poly(DL-lactide) (PDLLA) foams impregnated by calcium carbonate in vaterite crystalline form. Stable and homogeneous vaterite deposition on PDLLA foams was achieved using a slurry dipping technique. In vitro studies in simulated body fluid (SBF) were performed to induce formation of (HCA) on the surface of vaterite/PDLLA composite foams. HCA was detected after immersion of foams in SBF for 7 days. Hence, depositing vaterite on materials followed by immersion in SBF is confirmed to induce HCA coatings on the surface of the material. The HCA coated, bioactive and resorbable PDLLA foams are intended for use as bone tissue engineering scaffolds.  相似文献   

14.
Poly(DL-lactide) (PDLLA) foams and bioactive glass (Bioglass®) particles were used to form bioresorbable and bioactive composite scaffolds for applications in bone tissue engineering. A thermally induced phase separation process was applied to prepare highly porous PDLLA foams filled with 10 wt % Bioglass® particles. Stable and homogeneous layers of Bioglass® particles on the surface of the PDLLA/Bioglass® composite foams as well as infiltration of Bioglass® particles throughout the porous network were achieved using a slurry-dipping technique. The quality of the bioactive glass coatings was reproducible in terms of thickness and microstructure. In vitro studies in simulated body fluid (SBF) were performed to study the formation of hydroxyapatite (HA) on the surface of the PDLLA/Bioglass® composites, as an indication of the bioactivity of the materials. Formation of the HA layer after immersion in SBF was confirmed by X-ray diffraction and Raman spectroscopy measurements. The rate of HA formation in Bioglass®-coated samples was higher than that observed in non-coated samples. SEM analysis showed that the HA layer thickness rapidly increased with increasing time in SBF in the Bioglass®-coated samples. The high bioactivity of the developed composites suggests that the materials are attractive for use as bioactive, resorbable scaffolds in bone tissue engineering.  相似文献   

15.
The purpose of this study was to prepare poly(DL‐lactic acid) (PDLLA)/Bioglass® composites of foam‐like structure, to measure the degree of bioactivity of the composites by studying the formation of hydroxyapatite (HA) after immersion in simulated body fluid (SBF) and to test the initial attachment of human osteoblasts within the porous network. It was found that crystalline HA formed on the Bioglass® coated PDLLA foams after 7 days of immersion in SBF. HA formed also on the surfaces of non‐coated PDLLA foams, however the rate and amount of HA formation were much lower than in the composites. The rapid formation of HA on the Bioglass®/PDLLA foam surfaces confirmed the high bioactivity of these materials. Osteoblasts attached within the porous network throughout the depth of the foams. Cell density was found to be higher in the PDLLA/Bioglass® composites compared to the pure PDLLA foams. The composite foams developed here exhibit the required bioactivity to be used as scaffolds for bone tissue engineering.  相似文献   

16.
Porous poly(D,L-lactide) PDLLA foams containing 0, 5 and 20 wt% of TiO2 nanoparticles were fabricated and characterised. The addition of Bioglass® particles was also studied in a composite containing 5 wt% of Bioglass® particles and 20 wt% of TiO2 nanoparticles. The microstructure of the four different foam types was characterised using scanning electron microscopy (SEM) and their mechanical properties assessed by quasi-static compression testing. The in vitro behaviour of the foams was studied in simulated body fluid (SBF) at three different time points: 3, 21 and 28 days. The degradation of the samples was characterised quantitatively by measuring the water absorption and weight loss as a function of immersion time in SBF. The bioactivity of the foams was characterised by observing hydroxyapatite (HA) formation after 21 days of immersion in SBF using SEM and confirmed with X-ray diffraction (XRD) analysis. It was found that the amount of HA was dependent on the distribution of TiO2 nanoparticles and on the presence of Bioglass® in the foam samples.  相似文献   

17.
Composite scaffolds of poly(D,L-lactic acid) (PDLLA) with bioactive wollastonite were fabricated by the conventional solvent casting-particulate leaching method. The pore structures and morphology of the scaffolds were determined by scanning electron microscopy (SEM). The bioactivity of the composites was evaluated by soaking in a simulated body fluid (SBF), and the formation of the hydroxyapatite (HAp) layer was determined by SEM and energy-dispersive spectrometer. The results showed that the wollastonite/PDLLA composites were bioactive as it induced the formation of HAp on the surface of the composite scaffolds after soaking in SBF for seven days. In addition, pH and ion concentration changes of SBF solutions with composite scaffolds were examined. The results showed that the composites could release Ca and Si ions, which could neutralize the acidic degradation by-products of the PDLLA, and stabilize the pH of the SBF solutions between 6.7 and 7.2 within a three-week soaking period. Furthermore, the measurements of the water contact angles suggested that incorporation of wollastonite into PDLLA could improve the hydrophilicity of the composites and the enhancement was dependent on the wollastonite content. All these results suggest that incorporation of wollastonite into PDLLA might be a useful approach for the preparation of composite scaffolds for tissue repair and tissue-engineering applications.  相似文献   

18.
A novel tri-component composite membranes of chitosan/carboxymethyl cellulose (CS/CMC) polyelectrolyte complex membranes filled with different weight ratios of nano-hydroxyapatite (n-HA)(0, 20, 40 and 60 wt%), namely, n-HA/CS/CMC composite membrane, were prepared by self-assembly of static electricity. The structure and the properties of the composite membranes were investigated by Fourier transformed infrared spectroscopy(IR), X-ray diffraction(XRD), Scanning electron microscopy(SEM), mechanical performance measurement, swelling behavior test, and soaking behavior study in phosphate buffered saline (PBS) and simulate body fluid (SBF). The results showed that the n-HA/CS/CMC composite membrane was formed though superficial static electricity interaction among n-HA, CS and CMC. For the n-HA/CS/CMC composite membrane, the microstructure compatibility, mechanical property, swelling behavior, the degradation and bioactivity in vitro of the composite membrane were improved by the addition of n-HA, compared with CS/CMC polyelectrolyte complex membrane. Moreover, the n-HA/CS/CMC composite membrane with 40 wt% n-HA had the most highest mechanical property, which suggested that the novel n-HA/CS/CMC composite membrane with 40 wt% n-HA was more suitable to be used as guided bone tissue regeneration membrane than CS/CMC polyelectrolyte complex membrane.  相似文献   

19.
Nano-hydroxyapatite/chitosan/carboxymethyl cellulose (n-HA/CS/CMC) composites with weight ratios of 70/10/20, 70/15/15 and 70/20/10 were prepared through a co-solution method. The properties of the composites were characterized by means of burn-out test, IR, XRD, TEM and universal material testing machine. The degradation and bioactivity were also investigated by in vitro test in a simulated body fluid (SBF) for 8 weeks. The results showed that n-HA particles were dispersed uniformly in organic phase, and strong chemical interactions formed among the three phases. Moreover, the composites were similar to natural bone in morphology and size. In addition, the compressive strength was improved compared with n-HA/CS composite. The biodegradation rate was controllable by altering weight ratio of the CS/CMC. Meanwhile, the composites could induce apatite particles to deposit in SBF. All the above results indicate that the novel composites of n-HA/CS/CMC have a promising prospect used for bone repair materials in view of the good mechanical property, adjustable biodegradation rate and bioactivity in SBF. Additionally, the study would provide a good guide to exploit clinical application of natural cellulose.  相似文献   

20.
The present study describes a methodology to produce bioactive coatings on the surface of starch based biodegradable polymers or other polymeric biomaterials. As an alternative to the more typical bioactive glass percursors, a sodium silicate gel is being employed as a nucleating agent, for inducing the formation of a calcium-phosphate (Ca-P) layer. The method has the advantage of being able to coat efficiently both compact materials and porous 3D architectures aimed at being used on tissue replacement applications and as bone tissue engineering scaffolds. This treatment is also very effective in reducing the incubation periods, being possible to observe the formation of an apatite-like layer, only after 6 h of immersion in a simulated body fluid (SBF). The influence of the SBF concentration on the formation of the apatite coating was also studied. The apatite coatings formed under different conditions were analyzed and compared in terms of morphology, chemical composition and structure. After the first days of SBF immersion, the apatite-like films exhibit the typical cauliflower like morphology. With increasing immersion times, these films exhibited a partially amorphous nature and the Ca/P ratios became very closer to the value attributed to hydroxyapatite (1.67). The obtained results are very promising for pre-calcifying bone tissue engineering scaffolds. Therefore, in order to study cell behavior and response to these apatite coatings, adhesion, morphology, and proliferation of a human osteoblast cell line (SaOS-2) was also analyzed after being cultured in the coatings formed after 15 days of immersion in SBF. Results indicate a good correlation between crystallinity of the apatite like coatings formed in these conditions and respective cell spreading and morphology. In general, higher cell proliferation was observed for higher crystalline Ca-P coatings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号