首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Zinc-coated steel sheets are important materials in the automobile and home appliance industries. Currently, lasers are the preferred tools for metal cutting because of their good cutting quality, flexibility and excellent features and results, as compared to traditional tools. The solid-state Nd:YAG laser has successfully replaced the gaseous CO2 laser for metal cutting; its small size and short wavelength makes it suitable for cutting bright and metal-coated materials, as well as being able to be transmitted via optical fibers and robots to cut complicated three dimensional and curved shapes. In this work, the Nd:YAG laser is used to cut 1 mm zinc coated steel sheets. We demonstrate the effects of different cutting parameters such as laser power, cutting speed, different gas types and pressures, and focus position on the cutting quality characteristics of attached dross, kerf width and cut surface roughness. Using a six axes robot, cutting speed was limited to 6 m/min because of the noticeable vibration at higher speeds. Results showed that the cutting surfaces achieved were very sharp and smooth. In cutting, Nd:YAG required less power and attained higher speeds than the published results of a CO2 laser, which makes Nd:YAG an economical alternative to cut zinc and metal-coated materials. In addition, laser cutting using robots provided efficient and consistent cutting quality, especially in the case of 3D and countered cutting. Apart from using low speed, robots proved to be more economical than costly, specially designed CNC tables.  相似文献   

2.
This paper investigates the laser cutting performance of 1 mm Duralumin sheet with the aim to improve quality of cut by simultaneously optimising multiple performances such as cut edge surface roughness, kerf taper and kerf width. The experimental data obtained by Taguchi methodology-based L27 orthogonal array experimentation have been used in the hybrid approach optimization of grey relational analysis and fuzzy logic theory. The predicted optimum results have been verified by conducting confirmation experiments. The verification results show an overall improvement of 19 % in multiple quality characteristics. The effects of significant factors on quality characteristics have also been discussed.  相似文献   

3.
CO2 laser cutting of Kevlar laminate: influence of assisting gas pressure   总被引:1,自引:0,他引:1  
In the present study, laser cutting of Kevlar laminate is considered, and the effect of assisting gas pressure and laser output power on the end product quality is examined. The end product quality is judged via measurement of out-of-flatness and kerf width ratios. Experimental tests are carried out using a CO2 laser beam with pulse repetition rate of 300 Hz. The cutting model introduced previously is accommodated to predict the kerf size for various laser output power and assisting gas pressures. The predictions are compared with the experimental results. It is found that the predictions of kerf size are in good agreement with the experimental results. The influence of assisting gas pressure is significant on the resulting cut quality, in which case, out-of-flatness and kerf width ratio improve considerably at high assisting gas pressures (500 kPa).  相似文献   

4.
Samples of mild steel have been cut on a CO2 laser machine using the principle of laser assisted oxygen cutting (LASOX). The combined effects of input process parameters (cutting speed, gas pressure, laser power and stand off distance) on cut quality (heat affected zone (HAZ) width, kerf width and surface roughness) have been studied. Regression analysis has been used to develop models that describe the effect of the independent process parameters on cut quality. Using the developed model, we attempted to optimize the input parameters that would improve the cut quality (minimization of HAZ width, kerf width and surface roughness), increase the productivity and minimize the total operation cost. We found from the study that the gas pressure and cutting speed had pronounced effect on cut quality. Low gas pressure produces lower HAZ width, lower kerf width and good surface finish whereas increase in speed results in higher HAZ width, lower kerf width and good surface finish.  相似文献   

5.
不锈钢板的CO2激光切割工艺研究   总被引:3,自引:0,他引:3  
实验用CO2激光切割厚0.8mm的1Cr18Ni9Ti不锈钢板。研究了激光功率、辅助气体类型及压力、切割速度对切割质量的影响。实验显示提高切割速度能降低切缝宽度和切口横截面的表面粗糙度;而提高激光功率和氧气压力,切缝宽度也会随之提高,切口横截面更粗糙。功率650~700W、氧气压力0.3~0.5MPa、切割速度3.5~4.5m/min时切割质量最好。另外发现功率在780~1450W,氮气压力低于0.8MPa不能得到良好的切割质量。  相似文献   

6.
Laser cutting of carbon steel is extensively used across a range of industries, due to its advantage of high speed, low kerf and high quality. Currently, a 1-kW carbon dioxide (CO2) laser with its subsonic nozzle assembly can be used only to cut steel plates up to around 10 mm. This paper aims to design and evaluate a high-pressure supersonic laser cutting nozzle assembly, which can enable a 1-kW CO2 laser to cut steel of up to 50 mm thickness. Basic gas dynamic and compressible flow equations were used to design the supersonic nozzle assembly. The flow of the high-pressure gas jet inside the nozzle assembly was investigated using computational fluid dynamics (CFD), and the structural integrity of the high-pressure nozzle assembly was ensured using finite element analysis (FEA). The gas flow pattern at the exit of the nozzle assembly was computed and compared with the experimental observation made through a shadowgraph technique. Laser cutting experiments were performed with the developed supersonic nozzle assembly to demonstrate cutting of 50-mm-thick low carbon steel with 1-kW CO2 laser.  相似文献   

7.
An experimental investigation is presented which analyses the CO2 laser cutting process for difficult-to-cut metallic coated sheet steels, which are called GALVABOND. It shows that by proper control of the cutting parameters, good quality cuts are possible at high cutting rates. Plausible trends of the energy efficiency (percentage of energy used in cutting) with respect to the various process parameters are analysed. Visual examination indicates that when increasing the cutting rate to up to 5000 mm min−1 , kerfs of better quality than those produced using the parameters suggested in an early study can be achieved. Some kerf characteristics such as the width, heat affected zone and dross, in terms of the process parameters are also discussed. A statistical analysis has arrived at the relationships between the cutting speed, laser power and workpiece thickness, from which a recommendation is made for the selection of optimum cutting parameters for processing GALVABOND material.  相似文献   

8.
Polymethyl methacrylate (PMMA) is a versatile thermoplastic that is well suited for engineering and many common applications. This article presents a study to evaluate the effect of the processing parameters (laser power and cutting velocity) under the quality of the cut of PMMA. A plan of experiments was established considering CO2 laser cutting with prefixed processing parameters in plates of PMMA with 6 mm thickness. The objective was to evaluate the quality of the cut (surface roughness, dimensional precision and heat affected zone-HAZ) in linear and complex 2D cutting. The obtained results show that PMMA in complex 2D cutting presents dimension of HAZ between 0.12 to 0.37 mm, without burr and low surface roughness Ra?<?1 μm. The results present good repeatability.  相似文献   

9.
径向基神经网络在三维激光切割中的应用   总被引:3,自引:0,他引:3  
分析了RBF神经网络的特点,并研究了它在三维激光切割中的应用,利用该神经网络及其变形可以预测切缝的宽度,也可以根据输入参数对试样的挂渣与否进行判定。比较了三雏激光切割中切割倾角和切割方向对切割质量的影响,从而实现切割质量的预测和优化工艺参数的选取以指导实际的切割过程。  相似文献   

10.
In the present study, laser cutting of 7050 aluminum alloy sheets reinforced with Al2O3 and B4C particles are carried out. The cut geometry is examined using scanning electron microscope and the optical microscope. The lump parameter analysis technique is used to formulate and determine the kerf width size. The predictions for kerf width are compared with experimental data. The percentage kerf width size variation along the cut edges is determined and the influence of the laser power level and duty cycle of the laser pulses on the percentage kerf width size variation is examined. It is found that 7050 aluminum alloy reinforced with 20% Al2O3 composite results in relatively large kerf width size as compared to its counter parts that corresponding to 7050 aluminum alloy reinforced with 20% B4C composite. The kerf width size predicted agreed with the experimental data for both composites.  相似文献   

11.
Thin sheet anode and cathode materials made in composite structures constitute some of the most important components of a Li-ion battery. These materials are currently cut by punching technology, which shows degrading behaviour as the tool wears out. A viable option for Li-ion battery electrode manufacturing is the use of remote laser cutting. However, the operation requires fulfilling both productivity and quality aspects to substitute the conventional production method. One of the most critical aspects in quality is the clearance width, which is defined as the extent of the exposed middle layer of the sandwich at the laser cut kerf. This work investigates the quality aspects of laser cutting of Li-ion electrodes when a green fibre laser source (λ?=?532 nm, τ?=?1 ns) is used rather than the more traditional infrared (IR) fibre laser source (λ?=?1,064 nm, τ?=?250 ns). The processing conditions were investigated to reveal the technological feasibility zones. Clearance width was studied within the technological feasibility zones for all the material-laser combinations. Results showed that high productivity criterion is met by the IR system, since cutting speed could reach 30 m/min with 54 W average laser power on both anode and cathode. On the other hand, the green laser provided clearance width below 20 μm. In the best case, the clearance on anode could be eliminated with the green laser system. Although the maximum cutting speed was 4.5 m/min, upscaling of green laser power can provide required productivity.  相似文献   

12.
The application of laser beam for precise cutting of sheet metals, in general, and reflective sheet metals, like aluminium, in particular, has become of interest in the recent past. The optimum choice of the cutting parameters is essential for the economic and efficient cutting of difficult to cut materials with laser beams. In this paper, a robust design and quality optimization tool called the Taguchi methodology has been applied to find the optimal cutting parameters for cutting of a reflective sheet made of aluminium alloy with a Nd:YAG laser beam. All the steps of the Taguchi method, such as a selection of orthogonal array, computation of signal-to-noise ratio, decision of optimum setting of parameters, and the analysis of variance (ANOVA), have been done by a self-developed software called computer aided robust parameter design (CARPD). A considerable improvement in the kerf taper (KT) and material removal rate (MRR) has been found by using Taguchi method-based predicted results. Confirmatory experimental results have shown good agreement with predicted results. Further, the Taguchi quality loss function has also been used for multi-objective optimization of laser beam cutting of Al-alloy sheet. The results of multi-objective optimization are compared with the single-objective optimization and it has been found that the kerf taper was increased by 1.60% in multi-objective optimization while the MRR was same in both cases.  相似文献   

13.
This paper presents a statistical analysis of the performance of an Ytterbium fibre laser utilising single and dual gas jets in a single pass to blind cut dry pine wood. Cutting wood with lasers is a multi-factor process and a proper combination of the parameters involved is needed to achieve high quality and optimum process efficiency. This study employs design of experiments and statistical modelling approach to investigate the significant process parameters along with their interactions. A high brightness, 1 kW IPG single mode Ytterbium-doped fibre laser was employed to produce blind cuts on samples of dry pine wood. The experiments were performed parallel to the direction of the wood fibre. The parameters investigated include laser power, focal plane position, traverse speed, gas pressure and single and dual gas jets. Results were compared using a number of process responses which define the efficiency of the cut in terms of kerf depth, mass removal and energy consumption as well as quality of the cut section considering the heat-affected zone, kerf width and roughness of the edge of the surface. It has been found that application of an additional gas jet produced a surface finish superior to the single jet.  相似文献   

14.
The coronary stent fabrication requires a high-precision profile cut. Fibre lasers present a solution to accomplish these requirements. This paper presents an experimental study of fibre laser cutting of 316L stainless steel thin sheets. The effect of peak pulse power, pulse frequency and cutting speed on the cutting quality for fixed gas type and gas pressure was investigated. A mathematical model based on energy balances for the dross dimensions was formulated. The dross height and the dross diameter were analysed and compared with the experimental results. This allows adjustment of the process parameters to reduce the dimensions of the dross deposited at the bottom of the workpiece during laser cutting of thin sheets.  相似文献   

15.
Laser cutting of thick-section circular mild-steel blanks of 10 mm thickness is examined. Thermal and stress fields developed in the cutting zone are predicted using finite element method and the simulation conditions are selected in line with the experimental parameters. An experiment is carried out to assess the geometric features of the cut surfaces. The morphology of the cut sections are examined using optical and scanning electron microscopes and energy dispersive spectroscopy is carried out for elemental composition of the cut surface. It is found that laser cutting of thick steel blanks results in substantial conduction loss from the cutting zone, which results in high-temperature gradients and large stress levels in the cutting section. The cut edge features such as local dross attachment, striation patterns, and microcrack formation in the cut section are also examined.  相似文献   

16.
Laser cutting is an advanced thermal cutting process of complex nature. It's process behavior drastically changes with slight variation in processing conditions. The prediction of process performance becomes more difficult if cutting materials have non-favorable optical and thermal properties. Titanium (Ti) alloys are characterized by their low thermal conductivity and high chemical reactivity at elevated temperature and hence difficult to cut by laser. It has been found that complex and nonlinear behavior of manufacturing process can better be dealt with the application of artificial intelligence (AI) tools. The aim of present research is to develop a fuzzy expert system for prediction of the laser cutting process behavior of Ti alloy (Ti-6Al-4 V) sheet. A hybrid approach of neural network and fuzzy logic theory has been applied to develop the fuzzy expert system to predict the kerf widths and kerf deviation. The predicted results have been compared with the experimental data and found appropriate. The effects of significant process parameters on the different quality characteristics such as kerf widths and kerf deviation have been discussed.  相似文献   

17.
Non-traditional process like wire electro-discharge machining is found to show a promise for machining metal matrix composites. However, the machining information for the difficult-to-machine particle-reinforced material is inadequate. This paper is focused on experimental investigation to examine the effect of electrical as well as non-electrical machining parameters on performance in wire electro-discharge machining of metal matrix composites (Al/Al2O3p). Taguchi orthogonal array was used to study the effect of combination of reinforcement, current, pulse on-time, off-time, servo reference voltage, maximum feed speed, wire speed, flushing pressure and wire tension on cutting speed, surface finish, and kerf width. Reinforcement percentage, current, and on-time was found to have significant effect on cutting rate, surface finish, and kerf width. The optimum machining parameter combinations were obtained for surface finish, cutting speed, and kerf width separately. Wire breakages were found to pose limitations on the cutting speed in machining of these materials. Wire shifting was found to deteriorate the machined surfaces.  相似文献   

18.
In the process of abrasive water jet cutting, the change of nozzle diameter, due to nozzle wearing throughout cutting process, causes a decrease in surface quality and an increase in kerf width. In this paper, a series of experiments have been done to determine the effect of process parameters and the results show that traverse speed and nozzle diameter are significant parameters on the kerf quality and geometry, and a control program algorithm is suggested to compensate the effect of nozzle diameter increase on cut surface quality and kerf width and the control program creates an offset with required amount in nozzle path.  相似文献   

19.
Laser hole cutting in Kevlar: modeling and quality assessment   总被引:1,自引:1,他引:0  
Machining of Kevlar laminates with conventional methods results in poor end-product quality and excessive specific energy requirement for machining. However, laser machining has considerable advantages over the conventional methods due to precision and rapid processing. In the present study, laser hole cutting into Kevlar laminates with different thicknesses and properties is carried out. The laser output power, frequency, and cutting speed are varied during the hole-cutting experiments. The specific energy requirements for cutting, thermal efficiency of the cutting process, and kerf width are formulated and predicted for various laser parameters and Kevlar properties. The cut quality is associated with the damage size around the holes cut and statistical analysis is carried out to examine the affecting parameters on the damaged size. It is found that specific energy requirement is significantly lower than that of the conventional drilling method. The damage size is affected significantly by the laser irradiated power. The quality of holes, as judged by the percentage of damage size around the cut edges cut by a laser beam, is considerably improved compared to the conventional methods.  相似文献   

20.
To study the regular pattern of vapor-to-melt ratio in laser cutting sheet metal, a physical model of vapor-to-melt ratio is developed to demonstrate the material remove forms of vaporization-melt in cutting area and the state of energy and mass flow in the molten layer. Variation of vapor-to-melt ratio with laser power and cutting velocity is obtained by laser cutting of 6063 aluminum alloy sheet. The 0.5-mm sheet thickness is carried out on a JK701H Nd:YAG pulse laser cutting system by simulating under the regression correction of cut radius. Observation on the cut samples with different parameters (65 W, 85 W, 105 W varied with laser power increasing, and 2.2 mm/s, 2.0 mm/s, 1.8 mm/s with decreasing of beam cutting speed) and the calculations show that vapor-to-melt ratio increases (0.595–1.995, 0.672–2.631, 0.787–4.171) with laser power (65 W–110 W) and decreases with cutting velocity (1.8 mm/s–2.4 mm/s). At the same time, the laser cutting quality increases with vapor-to-melt ratio and the decrease with thickness of residual molten layer. The results show good agreement between vapor-to-melt ratio model and experiments. The analysis verifies that this model is feasible and it makes contribution to laser precision cutting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号