首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human-made structures are increasingly found in marine coastal habitats. The aim of the present study was to explore whether urban coastal structures can affect the genetic variation of hard-bottom species. We conducted a population genetic analysis on the limpet Patella caerulea sampled in both natural and artificial habitats along the Adriatic coast. Five microsatellite loci were used to test for differences in genetic diversity and structure among samples. Three microsatellite loci showed strong Hardy–Weinberg disequilibrium likely linked with the presence of null alleles. Genetic diversity was significantly higher in natural habitat than in artificial habitat. A weak but significant differentiation over all limpet samples was observed, but not related to the type of habitat. While the exact causes of the differences in genetic diversity deserve further investigation, these results clearly point that the expansion of urban structures can lead to genetic diversity loss at regional scales.  相似文献   

2.
The Chinese mitten crab Eriocheir sinensis is an indigenous and economically important species in China, but can also be found as invasive species in Europe and America. Mitten crabs have been exploited extensively as a food resource since the 1990s. Despite its ecological and economic importance, the genetic structure of native mitten crab populations is not well understood. In this paper, we investigated the genetic structure of mitten crab populations in China by screening samples from ten locations covering six river systems at six microsatellite loci. Our results provide further evidence that mitten crabs from the River Nanliujiang in Southern China are a genetically differentiated population within the native range of Eriocheir, and should be recognized as a separate taxonomic unit. In contrast, extremely low levels of genetic differentiation and no significant geographic population structure were found among the samples located north of the River Nanliujiang. Based on the reproductive biology of mitten crabs and the geography of their habitat we argue that both natural and human-mediated gene flow are unlikely to fully account for the similar allele frequency distributions at microsatellite loci. Large population sizes of mitten crabs suggest instead that a virtual absence of genetic drift and significant homoplasy of microsatellite alleles have contributed to the observed pattern. Furthermore, a coalescent-based maximum likelihood method indicated a more than two-fold lower effective population size of the Southern population compared to the Northern Group and low but significant levels of gene flow between both areas.  相似文献   

3.
The patchy distribution of rocky intertidal communities in the tropical eastern Pacific (TEP) may impose severe constraints on the genetic connectivity among populations of marine invertebrates associated with this habitat. In this study, we analyzed a portion of the mitochondrial cytochrome c oxidase subunit I (COI) gene in two sympatric species of marine snails, Nerita scabricosta and Nerita funiculata, common inhabitants of the rocky intertidal from the Gulf of California (Sea of Cortez) and outer Pacific coast of the southern Baja California (Baja) peninsula to northern South America, to assess genetic connectivity among populations of each species. One of our aims was to determine whether the morphological, behavioral, and ecological differences observed among populations of both species throughout their range in the TEP corresponded to population genetic differences. In addition, we were interested in elucidating the demographic history of both species. We found no evidence of genetic structure throughout the Gulf of California and outer coast of the Baja peninsula region for either species. Comparisons between Gulf of California/Baja and Panama populations, however, showed significant genetic differentiation for N. scabricosta, but not for N. funiculata. The genetic differences between Mexican and Panamanian populations of N. scabricosta were consistent with previously reported ecological and behavioral differences for this species between these two distant regions. However, previously reported size differences between northern and central/southern Gulf of California individuals of N. scabricosta do not correspond with our findings of genetic connectivity among these populations. Results from neutrality tests (Tajima’s D and Fu’s F S), the mismatch distribution, and Bayesian skyline analyses suggested that both species have experienced dramatic population expansions dating to the Pleistocene.  相似文献   

4.
The current taxonomic status of Sotalia species is uncertain. The genus once comprised five species, but in the twentieth century they were grouped into two (riverine Sotalia fluviatilis and marine Sotalia guianensis) that later were further lumped into a single species (S. fluviatilis), with marine and riverine ecotypes. This uncertainty hampers the assessment of potential impacts on populations and the design of effective conservation measures. We used mitochondrial DNA control region and cytochrome b sequence data to investigate the specific status of S. fluviatilis ecotypes and their population structure along the Brazilian coast. Nested-clade (NCA), phylogenetic analyses and analysis of molecular variance of control region sequences showed that marine and riverine ecotypes form very divergent monophyletic groups (2.5% sequence divergence; 75% of total molecular variance found between them), which have been evolving independently since an old allopatric fragmentation event. This result is also corroborated by cytochrome b sequence data, for which marine and riverine specimens are fixed for haplotypes that differ by 28 (out of 1,140) nucleotides. According to various species definition methods, we conclude that marine and riverine Sotalia are different species. Based on priority criteria, we recommend the revalidation of Sotalia guianensis (Van Bénéden 1864) for the marine animals, while riverine dolphins should retain the species name Sotalia fluviatilis (Gervais 1853), thus becoming the first exclusively riverine delphinid. The populations of S. guianensis show a strong subdivision (ΦST=0.628) along the Brazilian coast, with at least three evolutionarily significant units: north, northeastern and south/southeastern.  相似文献   

5.
The giant Australian cuttlefish Sepia apama Gray, 1849 annually forms a massive and unique spawning aggregation in northern Spencer Gulf, South Australia, which has attracted commercial fishing interests in recent years. However, many basic life-history characteristics of S. apama are unknown, and anecdotal evidence suggests that there is more than one species. The present study assessed the population structure and species status of S. apama using data from allozyme electrophoresis, microsatellite loci, nucleotide sequences of the mitochondrial COXIII gene, multivariate morphometrics and colour patterns. Analyses of allozyme and microsatellite allele frequencies revealed two very divergent but geographically separated populations consisting of specimens from the east coast and southern Australia. However, the presence of a heterozygote in a putative contact zone between the east coast and southern Australia suggested that these populations were not reproductively isolated. Mitochondrial haplotypes seem to have introgressed further north into the contact zone than have nuclear alleles. Differences in colour patterns that previously had been attributed anecdotally to different geographic populations were, in fact, correlated with sexual dimorphism. These data are most consistent with S. apama being one species the populations of which were geographically isolated in the past (historical vicariance) and have come into secondary contact. Comparison of microsatellite allele frequencies among four South Australian samples indicated significant deviations from panmixia. South Australian samples were also reliably diagnosed by means of multivariate morphometrics. Significant differences in mantle length were observed among populations.Communicated by M.S. Johnson, Crawley  相似文献   

6.
Despite the apparent absence of geographic barriers, connectivity among marine populations may be restricted by, for example, ecological or behavioral mechanisms. In such cases, populations may show genetic differentiation even over relatively small spatial scales. Here, mitochondrial sequence data from the cytochrome oxidase I (COI) gene and seven polymorphic microsatellite markers were used to investigate fine geographic scale population genetic structure in the snapping shrimp Alpheus angulosus, a member of the A. armillatus species complex, from collections in Florida, Jamaica, and Puerto Rico carried out from 1999 to 2005. The COI data showed a deep divergence that separated these samples into two mitochondrial clades, but this divergence was not supported by the microsatellite data. The COI data reflect past population divergence not reflected in extant population structure on the whole genome level. The microsatellite data also revealed evidence for moderate population structure between populations as close as ∼10 km, and no evidence for isolation by distance, as divergences between near populations were at least as strong as those between more broadly separated populations. Overall, these data suggest a role for restricted gene flow between populations, though the mechanisms that reduce gene flow in this taxon remain unknown.  相似文献   

7.
Lingcod, Ophiodon elongatus Girard, have a 3-month pelagic larval stage and are an important recreational and commercial species on the west coast of North America. Cytochrome-c oxidase I sequences from tissue samples were used to characterize population structure and infer patterns of gene flow from California to Alaska. No significant genetic structure was found when estimates of Wright’s F ST (i.e., ΦST) were generated among all populations sampled. Nesting populations within regions, however, indicated that the inner coast of Washington State is distinct, a result corroborating previous allozyme work. Coalescent-based estimates of gene flow indicate that although migration can be high from an evolutionary perspective, nearly half of all comparisons among populations showed no gene flow in at least one direction. From an ecological perspective, moderate migration rates (Nm < 10) among most populations provide surprisingly limited connectivity at large (∼ 1,000 km) and small (∼100 km) spatial scales. Coalescent-based estimates also show that gene flow between the inner and the outer coasts is asymmetric, a result consistent with prevailing surface currents. Because the expected inter-locus variances for coalescent-based estimates of gene flow are likely large, future work will benefit from analyses of nuclear DNA markers. However, limited demographic connectivity on large spatial scales may help explain why stock recovery has been uneven, with greater recovery in the northern (87% rebuilt) than in the southern (24% rebuilt) fishery region, supporting a regional management strategy. These results suggest that despite a 3-month pelagic larval stage, some areas may be effectively closed with respect to both population dynamics and fishery management issues.  相似文献   

8.
Genetic population structures along the Japanese coast, analyzed by sequence data from the mitochondrial DNA COI region, were determined for four intertidal brachyuran species in the superfamily Thoracotremata (Ocypode ceratophthalma, Gaetice depressus, Chiromantes dehaani and Deiratonotus japonicus), which were characterized by different habitat requirements. O. ceratophthalma (seashore; supratidal sand) and C. dehaani (estuarine; supratidal marsh) showed no significant genetic differentiation among Japanese populations. The Japanese populations of O. ceratophthalma, however, were found to genetically differentiated from the Philippine population. G. depressus (seashore; intertidal cobbles) exhibited significant genetic differentiation between the Amami-Ohshima population and other local populations. D. japonicus (estuarine; intertidal cobbles) showed significant genetic differentiation among many local populations separated by about 30–1,200 km. The different patterns of genetic population structure recorded for the four species, thus, do not simply correspond to habitat type. An erratum to this article can be found at  相似文献   

9.
Genetic population structures along the Japanese coast, analyzed by sequence data from the mitochondrial DNA COI region, were determined for four intertidal brachyuran species in the superfamily Thoracotremata (Ocypode ceratophthalma, Gaetice depressus, Chiromantes dehaani and Deiratonotus japonicus), which were characterized by different habitat requirements. O. ceratophthalma (seashore; supratidal sand) and C. dehaani (estuarine; supratidal marsh) showed no significant genetic differentiation among Japanese populations. The Japanese populations of O. ceratophthalma, however, were found to genetically differentiated from the Philippine population. G. depressus (seashore; intertidal cobbles) exhibited significant genetic differentiation between the Amami-Ohshima population and other local populations. D. japonicus (estuarine; intertidal cobbles) showed significant genetic differentiation among many local populations separated by about 30–1,200 km. The different patterns of genetic population structure recorded for the four species, thus, do not simply correspond to habitat type.  相似文献   

10.
Crassostrea ariakensis is an important aquacultured oyster species in Asia, its native region. During the past decade, consideration was given to introducing C. ariakensis into Chesapeake Bay, in the United States, to help revive the declining native oyster industry and bolster the local ecosystem. Little is known about the ecology and biology of this species in Asia due to confusion with nomenclature and difficulty in accurately identifying the species of wild populations in their natural environment. Even less research has been done on the population genetics of native populations of C. ariakensis in Asia. We examined the magnitude and pattern of genetic differentiation among 10 wild populations of C. ariakensis from its confirmed distribution range using eight polymorphic microsatellite markers. Results showed a small but significant global θ ST (0.018), indicating genetic heterogeneity among populations. Eight genetically distinct populations were further distinguished based on population pairwise θ ST comparisons, including one in Japan, four in China, and three populations along the coast of South Korea. A significant positive association was detected between genetic and geographic distances among populations, suggesting a genetic pattern of isolation by distance. This research represents a novel observation on wild genetic population structuring in a coastal bivalve species along the coast of the northwest Pacific.  相似文献   

11.
Understanding the evolutionary processes from recent demographic history is especially difficult for interstitial organisms due to their poorly known natural history. In this study, the genetic variation and population history of the four Ototyphlonemertes (Diesing in Sitz ber Math Nat Kl Akad Wiss Wien 46:413–416, 1863) species were evaluated from samples collected along the Brazilian coast (between 27°31′S and 13°00′W) in 2006. The mitochondrial region cytochrome c oxidase subunit 3 (COX3) is analyzed to assess the genetic variation of these dioecious species. Although these species have a sympatric distribution along the coast, our data suggest that their levels of differentiation and their demographic histories differ sharply. There is strong evidence of gene flow among demes in O. erneba and O. evelinae, and their level of structuring is much lower than for the other two species. Indeed, the COX3 fragment reveals cryptic lineages in O. lactea and O. parmula. The results seem to contradict the high genetic structuring and low intrapopulational variability expected with the ecological constriction and habitat discontinuity faced by these organisms, meaning that there might be gene flow among populations or their dispersal capability has been underestimated.  相似文献   

12.
We used microsatellite genetic markers to investigate adult population structure and the formation of a new year-class in Sebastes mystinus (blue rockfish). Since S. mystinus may live as long as 45 years and reach reproductive age at approximately 5 years, the adult population may contain as many as eight generations of reproductive adults. We investigated whether the juveniles of the 2000 year-class and the adult population were genetically homogeneous along the California coast. We sampled approximately 100 juveniles from three sites, two sites along the Monterey Peninsula (Carmel and Monterey) in central California and one at Fort Ross in northern California, and approximately 50 adult S. mystinus from five sites throughout the population center. The adult sampling spanned approximately 700 km from the northern Channel Islands to Fort Bragg. The juveniles showed significant heterogeneity in allele frequencies among distant locations and genetic homogeneity among adjacent locations. In contrast, the adults showed genetic homogeneity over large distances (San Miguel Island to Fort Bragg), indicating little limitation of gene flow in this region. Allele frequencies of juveniles differed from adult samples and in some cases reduced genetic diversity indicative of sweepstakes recruitment (small sample of the adult reproductive potential). The genetic structure of the 2000 year-class suggests that despite a genetically homogenous adult population, settled juveniles can be genetically heterogeneous along the California coast. The results also suggest that the adults, with several year-classes, are capable of maintaining a panmictic population despite the genetic distinctiveness of individual year-classes.  相似文献   

13.
Roads,Interrupted Dispersal,and Genetic Diversity in Timber Rattlesnakes   总被引:1,自引:0,他引:1  
Abstract: Anthropogenic habitat modification often creates barriers to animal movement, transforming formerly contiguous habitat into a patchwork of habitat islands with low connectivity. Roadways are a feature of most landscapes that can act as barriers or filters to migration among local populations. Even small and recently constructed roads can have a significant impact on population genetic structure of some species, but not others. We developed a research approach that combines fine‐scale molecular genetics with behavioral and ecological data to understand the impacts of roads on population structure and connectivity. We used microsatellite markers to characterize genetic variation within and among populations of timber rattlesnakes (Crotalus horridus) occupying communal hibernacula (dens) in regions bisected by roadways. We examined the impact of roads on seasonal migration, genetic diversity, and gene flow among populations. Snakes in hibernacula isolated by roads had significantly lower genetic diversity and higher genetic differentiation than snakes in hibernacula in contiguous habitat. Genetic‐assignment analyses revealed that interruption to seasonal migration was the mechanism underlying these patterns. Our results underscore the sizeable impact of roads on this species, despite their relatively recent construction at our study sites (7 to 10 generations of rattlesnakes), the utility of population genetics for studies of road ecology, and the need for mitigating effects of roads.  相似文献   

14.
The upwelling systems along the coast of Morocco support some of the largest populations of sardine (Sardina pilchardus) in the world. Although these populations provide a base for a substantial fishing industry, virtually nothing is known about the genetic stock structure of this fish. Samples (n = 346), collected from seven sites along the Atlantic coast and in the Alboran Sea, were examined for exon-primed intron-crossing PCR (EPIC-PCR) polymorphism. Two markers, CaM-4 and Ops-1, had 6 and 9 alleles, respectively, after the pooling of gel fragments into 5 bp length classes, Correspondence analysis and the distribution of F st among samples indicated that Moroccan populations were divided into two groups with F st = 0.034 (< 0.05) across the Gibraltar Strait. Populations along the Atlantic coast of Morocco comprise one genetic unit, except for a weak genetic boundary south of Cape Ghir and the peculiar behavior of the Safi sample would indicate a genetic drift. Complex ocean hydrodynamics around Gibraltar Strait and across Cape Ghir, likely, contributes to these genetic isolations. These results point out the usefulness of population genetic studies in stock management for sardine populations that may be particularly vulnerable to overexploitation especially during upwelling intensity shifts.  相似文献   

15.
With the discovery of previously unreported populations of hemoglobin-possessing Ophiactis from the Texas coast in the Gulf of Mexico, an investigation into its population structure, including populations of O. simplex from the Pacific coast of California and O. rubropoda from the Atlantic coast of Florida, was undertaken using DNA sequence data from the mitochondrial COI gene. The reconstructed haplotype network suggests that California populations contain the ancestral source of mtDNA variation, and there is no evidence of recent introductions into Texas. Population genetic analyses reveal the California, Florida, and Texas Ophiactis populations to each be significantly differentiated from one another. Sequence divergence among the three areas is shallower than would be predicted given biogeographic history. Texas and Florida populations are equally genetically diverged from California populations as they are to one another, despite the greater potential for gene flow between these areas. The genetic distinctiveness of the Texas populations and the concordance of this pattern with phylogeographic patterns in other brittle star systems indicate an isolated and independent evolutionary history and we hypothesize that the three geographic regions included in this study each serve as hypotheses of population-level lineages that remain to be tested with independent sources of data.  相似文献   

16.
This study investigated the utility of microsatellite markers for providing information on levels of population connectivity for a low dispersing reef fish in New South Wales (NSW), Australia, at scales ≤400 km. It was hypothesized that the temperate damselfish Parma microlepis, which produces benthic eggs and has limited post-settlement dispersal, would exhibit spatial genetic structure and a significant pattern of isolation-by-distance (IBD). A fully nested hierarchical sampling design incorporating three spatial scales (sites, location and regions, separated by 1–2, 10–50 and 70–80 km respectively) was used to determine genetic variability at seven microsatellite loci. Broad-scale genetic homogeneity and lack of IBD was well supported by single and multi-locus analyses. The proportion of the total genetic variation attributable to differences among regions, locations or sites was effectively zero (Φ/R-statistics ≤0.007). The geographic distribution of genetic diversity and levels of polymorphism (H E 0.21–0.95) indicate high mutation rates, large effective population sizes, and high rates of gene flow. Significant gene flow may be driven by factors influencing pre-settlement dispersal, including the East Australian Current (EAC) and habitat continuity. Genetic connectivity may not reflect demographically important connectivity, but does imply that P. microlepis populations are well connected from an evolutionary perspective. Total observed genetic diversity was accounted for within 1–2 km of reef and could be represented within small Marine Protected Areas. Reef fishes in NSW which have life histories similar to P. microlepis (e.g. pre-settlement durations ≥2 weeks) are also likely to exhibit genetic homogeneity. Genetic markers are, therefore, most likely to provide information on demographically relevant connectivity for species with lower dispersal capabilities, small population sizes, short life spans, and whose habitats are rare, or patchily distributed along-shore. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

17.
Within its distribution range in the northeastern Atlantic, the stalked barnacle Pollicipes pollicipes shows a well-defined pattern of genetic variation, comprising (a) a subtropical/temperate northern assemblage, made up of populations distributed between 47°N and 28°N along the French, Iberian, North African and Canary Islands coastlines, and (b) a single isolated and highly divergent tropical population in the Cape Verde Islands (16°N), at the southernmost limit of the species’ distribution. However, within the northern assemblage several populations show a level of genetic differentiation that allows rejection of the hypothesis of genetic homogeneity. The congruence observed between genetic and hydrographic patterns suggests a crucial role of hydrodynamics, and of the dispersal of the planktonic larvae, in the determination of population structure. Along the southern European Atlantic coast, the Iberian Poleward Current and mesoscale hydrographic structures are, respectively, facilitating gene flow at the regional level and genetic differentiation at the local level. On the Atlantic coast of North Africa, the homogenizing equatorward flow of the Canary Current does not extend as far as the Cape Verde Islands. A demographic expansion is dated to the late Pleistocene, preceding the Eemian interglacial, and is oldest in the case of the long-standing Cape Verde population, sustained by a stable tropical habitat. The divergence between the Cape Verde population and the remaining populations is thus ancient, and suggests that oceanic current patterns may constitute a generalized physical barrier to the dispersal of marine organisms between Cape Verde and the rest of Macaronesia.  相似文献   

18.
Commercially harvested marine bivalve populations show a broad range of population-genetic patterns that may be driven by planktonic larval dispersal (gene flow) or by historical (genetic drift) and ecological processes (selection). We characterized microsatellite genetic variation among populations and year classes of the commercially harvested Arctic surfclam, Mactromeris polynyma, in order to test the relative significance of gene flow and drift on three spatial scales: within commercially harvested populations in the northwest Atlantic; among Atlantic populations; and between the Atlantic and Pacific oceans. We found small nonsignificant genetic subdivision among eight populations from the northwest Atlantic (F ST = 0.002). All of these Atlantic populations were highly significantly differentiated from a northeast Pacific population (F ST = 0.087); all populations showed high inbreeding coefficients (F IS = 0.432). We tested one likely source of heterozygote deficits by aging individual clams and exploring genetic variation among age classes within populations (a temporal Wahlund effect). Populations showed strikingly different patterns of age structure, but we found little differentiation among age classes. In one case, we were able to analyze genetic diversity between age classes older or younger than the advent of intensive commercial harvesting. The results generally suggest spatially broad and temporally persistent genetic homogeneity of these bivalves. We discuss the implications of the results for the biology and management of surfclam populations. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

19.
In a previous study on the kuruma shrimp Penaeus japonicus from the South China Sea, we detected high genetic divergence between two morphologically similar varieties (I and II) with distinct color banding patterns on the carapace, indicating the occurrence of cryptic species. In the present study, we clarify the geographical distribution of the two varieties in the western Pacific by investigating the genetic differentiation of the shrimp from ten localities. Two Mediterranean populations are also included for comparison. Based on the mitochondrial DNA sequence data, the shrimps are separated into two distinct clades representing the two varieties. Variety I comprises populations from Japan and China (including Taiwan), while variety II consists of populations from Southeast Asia (Vietnam, Singapore and the Philippines), Australia and the Mediterranean. Population differentiation is evident in variety II, as supported by restriction profiles of two mitochondrial markers and analysis of two microsatellite loci. The Australian population is genetically diverged from the others, whereas the Southeast Asian and Mediterranean populations show a close genetic relationship. Variety I does not occur in these three localities, while a small proportion of variety II is found along the northern coast of the South China Sea and Taiwan, which constitute the sympatric zone of the two varieties. The present study reveals high genetic diversity of P. japonicus. Further studies on the genetic structure of this species complex, particularly the populations in the Indian Ocean and Mediterranean, are needed not only to understand the evolutionary history of the shrimp, but also to improve the knowledge-based fishery management and aquaculture development programs of this important biological resource.  相似文献   

20.
Evolutionary diversification of the broadly distributed copepod sibling species complex Eurytemora affinis has been documented in the northern hemisphere. However, the fine scale geographic distribution, levels of genetic subdivision, evolutionary, and demographic histories of European populations have been less explored. To gain information on genetic subdivision and to evaluate heterogeneity among European populations, we analyzed samples from 8 locations from 58° to 45°N and 0° to 23°E, using 549 base pairs of the mitochondrial cytochrome oxidase subunit I (COI) gene. We discovered three distinct lineages of E. affinis in Western Europe, namely the East Atlantic lineage, the North Sea/English Channel (NSEC) lineage, and the Baltic lineage. These geographically separated lineages showed sequences divergence of 1.7–2.1%, dating back 1.9 million years (CI: 0.9–3.0 My) with no indication of isolation by distance. Genetic divergence in Europe was much lower than among North American lineages. Interestingly, genetic structure varied distinctively among the three lineages: the East Atlantic lineage was divided between the Gironde and the Loire populations, the NSEC lineage comprised one single population unit spanning the Seine, Scheldt and Elbe rivers and the third lineage was restricted to the Baltic Proper (Sweden). We revealed high haplotype diversity in the East Atlantic and the Baltic lineages, whereas in the NSEC lineage haplotype diversity was comparatively low. All three lineages showed signs of at least one demographic expansion event during Pleistocene glaciations that marked their genetic structure. These results provide a preliminary overview of the genetic structure of E. affinis in Europe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号