首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Wiper insert have the characteristics of achieving an excellent surface finish and improving the productivity in turning processes. Wiper insert can provide twice feed rate while maintaining the comparable surface roughness compared to that provided by the conventional insert. In the present study, surface topographies in finish turning with conventional and wiper inserts are investigated. The key element of this work is that the cutting edge path equation in the cutting tool coordinate system is transformed into the machine tool and workpiece coordinate system by the use of spatial coordinate transformation. Following that a surface topography simulation algorithm based on the cutting edge path equation and cutting parameters is put forward. The output of this work is that both the simulated surface topography and surface roughness profile are good agreement with the experimental results. Both the simulated and the actual machined surface results show that better surface topography is obtained in finish turning with the wiper insert than that with conventional insert. Burnishing effect of the wiper insert leads to half decrease of the Ra and Rz. The actual surface profiles are no longer regular wave shapes due to ploughing effect and side flow existing in the cutting zone. In addition, a surface roughness map has also been developed to optimize the selection of wiper radius and feed rate to satisfy the requirement of surface finishing with higher productivity. From the viewpoint of cutting tool design, the wiper radius with five times larger than tool nose radius can fully come into its role. This provides a novel insight into the design of wiper insert over conventional techniques. Above all, the proposed model gives a better prediction of surface roughness in finish turning process compared to the previous empirical and regression roughness models. The prediction of surface roughness in finish turning with wiper insert is also realized.  相似文献   

2.
This paper presents a theoretical and experimental investigation into the effect of the workpiece material on surface roughness in the ultra-precision milling process. The influences of material swelling and tool-tip vibration on surface generation in ultra-precision raster milling are studied. A new method is proposed to characterize material-induced surface roughness on the raster-milled surface. A new parameter is defined to characterize the extent of surface roughness profile distortion induced by the materials being cut. An experiment is conducted to compare the proposed method with surface roughness parameters and power spectrum density analysis method by machining three different workpiece materials. The results show that the presence of elastic recovery improves the surface finish in ultra-precision raster milling and that, among the three materials being cut in the experiment, aluminum bronze has the greatest influence on surface finish due to its highest elastic recovery rate and hardness. The results also show that, in the case of faster feed rates, the proposed method more efficiently characterizes material-induced surface roughness.  相似文献   

3.
Chemical mechanical planarization (CMP) is the major manufacturing step used to planarize semiconductor wafers and obtain mirror surface finish. In CMP, diamond disk pad conditioning is traditionally employed to restore pad planarity and surface roughness. The conditioning tool typically consists of a metal disk with one side embedded with protruding diamond grits (abrasives). The conditioner design has a significant effect on the pad conditioning process and hence the wafer planarization process. This paper proposes the application of engineering optimization methods such genetic algorithm to the conditioner design problem for the first time. A new metric to evaluate conditioning performance based on the conditioning density generated by a specific conditioner design is developed. The metric is applied in a genetic algorithm to optimize conditioner design parameters (including geometric arrangement of diamonds, grit density and disk size). The model searches for the design parameters that produce a desired CMP pad surface texture. Results show that the model can effectively serve as a platform to evaluate and tune conditioner design for different applications in CMP.  相似文献   

4.
Surface roughness is significant to the finish cut of wire electrical discharge machining (WEDM). This paper describes the influence of the machining parameters (including pulse duration, discharge current, sustained pulse time, pulse interval time, polarity effect, material and dielectric) on surface roughness in the finish cut of WEDM. Experiments proved that the surface roughness can be improved by decreasing both pulse duration and discharge current. When the pulse energy per discharge is constant, short pulses and long pulses will result in the same surface roughness but dissimilar surface morphology and different material removal rates. The removal rate when a short pulse duration is used is much higher than when the pulse duration is long. Moreover, from the single discharge experiments, we found that a long pulse duration combined with a low peak value could not produce craters on the workpiece surface any more when the pulse energy was reduced to a certain value. However, the condition of short pulse duration with high peak value still could produce clear craters on the workpiece surface. This indicates that a short pulse duration combined with a high peak value can generate better surface roughness, which cannot be achieved with long pulses. In the study, it was also found that reversed polarity machining with the appropriate pulse energy can improve the machined surface roughness somewhat better compared with normal polarity in finish machining, but some copper from the wire electrode is accreted on the machined surface.  相似文献   

5.
Abstract

Obtaining a surface with negligible roughness is very expensive, time consuming and unnecessary. The influence of surface roughness on the contact stiffness is of great importance. The extra cost associated with unnecessary surface finish can be limited by eliminating the unnecessary machining operations beyond the required surface finish. In this article, a simplified solution is presented to calculate the stiffness of rough contact between the workpiece and spherical locator; also, the effect of surface roughness on the stiffness and deformation of rough spherical contact is studied for different applied loads to find an ‘economic roughness’ under machining forces.  相似文献   

6.
In the evaluation of surface roughness by machine vision technique, the scattered light pattern reflected from the machined surface is generally captured and optical surface finish parameters from the images are correlated with the actual roughness. Capturing of the image at appropriate conditions is required for the good correlation of the optical parameters with the roughness. Lighting conditions is a major factor that influences the image pattern and hence the optical parameters. In this work the lighting conditions like grazing angle, the light to specimen distance, the orientation of the striations on the surface to the light are varied and its influence on the optical surface finish parameter are studied. A plan of experiments based on the techniques of Taguchi was designed and executed for conducting the trials and to obtain valid conclusions. The analysis of variance and the signal to noise ratio of robust design are employed to investigate the influence of different lighting conditions on the optical surface finish parameter. The results of both the approaches confirm that grazing angle is the most influencing factor affecting the image parameter.  相似文献   

7.
Study on the surface roughness of specimen is a significant field of research because this parameter affects the performance of the machined parts. Meanwhile, the evaluation of surface roughness of specimens using a vision system via the images captured from the specimen is an interesting method which is widely used. Although the effect of flank and crater wear has been investigated extensively in the past researches on surface profiles, some reports indicated that, in finish turning, the nose radius wear has a greater effect on the surface profile of specimen. Although, vibration can affect the surface profile of a specimen in rough turning, the final surface profile in the product used is usually shaped by finish turning that may not be affected by vibration using the robust machine tool. In this work, a machine vision was used to capture the images of the tool tip in-cycle. The 2-D images of the nose area of tool tips were used to simulate the surface profile of specimens in finish turning. The simulated images of specimens in a range of machining condition were detected using the algorithm of this work. The results showed that this method can be used successfully to simulate and evaluate the surface profile of a specimen in finish lathe machining as a fingerprint of the tool tip. This method can be used for forecasting the final surface profile in order to control the performance of products.  相似文献   

8.
This investigation focuses on the influence of tool geometry on the surface finish obtained in turning of AISI 1040 steel. In order to find out the effect of tool geometry parameters on the surface roughness during turning, response surface methodology (RSM) was used and a prediction model was developed related to average surface roughness (Ra) using experimental data. The results indicated that the tool nose radius was the dominant factor on the surface roughness. In addition, a good agreement between the predicted and measured surface roughness was observed. Therefore, the developed model can be effectively used to predict the surface roughness on the machining of AISI 1040 steel with in 95% confidence intervals ranges of parameters studied.  相似文献   

9.
Non-contact methods are ideal for in-process monitoring of surface finish. In this context, the application of microwave reflection for the assessment of roughness assumes significance. It is well known that surface roughness affects the reflection of microwaves, and the energy loss in their transmission is considerably influenced by the finish of the wave guides. Experimental investigations were conducted with a sweep oscillator and reflectometer to find the feasibility of this technique in monitoring the roughness of manufactured surfaces. A number of surface specimens produced with different machining operations were measured for the return loss, and these compared with the normal roughness values. This paper deals with the experiments conducted and results obtained in these investigations.  相似文献   

10.
In order to investigate the influence of material anisotropy in ductile cutting of Potassium Dihydrogen Phosphate (KDP) crystals, experiments of face cutting of (001) plane of KDP crystals are carried out by using an ultra-precision lathe with a single point diamond tool. The cutting forces, surface finish, and surface roughness in all crystallographic orientations of the machined surface are measured, and a power spectrum analysis method is used to reveal the cutting force patterns. The experimental results show that the cutting forces and surface roughness vary greatly with different crystallographic orientations of KDP crystal, and that amplitude variation of cutting forces and surface finish is closely related with the cutting parameter of the maximum undeformed chip thickness. With the maximum undeformed chip thickness below 30 nm, the amplitude variation of cutting force and surface finish is minimized, and a super-smooth surface with consistent surface finish in all the crystallographic orientations can be achieved. The surface roughness is 2.698 nm (Ra) measured by Atomic Force Microscope (AFM). These findings provide criteria for achieving a large-scale KDP crystal with consistent super-smooth surface using ductile cutting technology.  相似文献   

11.
To achieve 1 Tb/in.2 magnetic recording areal density, the head/disk spacing, or the flying height of the slider, has become so small that both the disk surface roughness and the slider air-bearing surface roughness need to be considered. In this region, the intermolecular force and the contact force become more significant due to the roughness of the two surfaces. This article targets two points: 1) slider/disk roughness effects on intermolecular force and 2) slider/disk roughness requirement for 1 Tb/in.2 areal density. A probability model is built to simulate the intermolecular force and the contact force, and these two forces are introduced into the modified compressible Reynolds equation governing the air-bearing pressure of the slider. The equation is solved by the finite volume method based on an unstructured triangle-based mesh. The simulation results show that in 1 Tb/in.2 areal density magnetic recording the effects of slider/disk roughness on the intermolecular force are negligible. Smaller R a values will have fewer effects on flying performance.  相似文献   

12.
S. Vajpayee 《Wear》1981,70(2):165-175
Instruments for the evaluation of the surface finish of a machined part are sophisticated and costly, so theoretical equations which can predict approximately the magnitude of surface roughness under given cutting conditions are required.An analytical study of the roughness on surfaces turned by a singlepoint tool is presented. The effect of tool wear is also taken into account. A new technique is proposed by which the level of finish, conventionally obtained through a finishing cut after a roughing cut, can be improved. Alternatively, this technique, which is based on the principle of overlapping of cuts, can reduce the machining time in comparison with that required for the conventional roughing and finishing cut method to achieve a desired level of finish.  相似文献   

13.
This paper describes an investigation of the effect of the microblasting process on the surface finish of jewellery models built using stereolithography apparatus (SLA). The layering process of SLA results in visible steps on the model surface. The investigation aims to determine the significant operating parameters of the microblaster deburring process that affect the surface roughness of the SLA jewellery model, to set a practicable range for these parameters for effective deburring and establish the optimum parameters for the best surface finish. A ring model based on the British Standards 28653: 1993 is designed using the Pro-Engineer software. The experimental strategy applies techniques including the full factorial and Yates' method together with the analysis of variance on the deburred samples. The surface roughness of the ring models before and after the deburring process are then measured with a Form Talysurf surface roughness measuring machine. The information obtained is used to identify the parameters for further study. Parameters identified are different nozzle types, blasting time and pressure variation. These parameters are tested for their optimum settings and the microblasting process is found to significantly improve the surface finish by approximately 30% on both the curvature and flat features of the ring model.  相似文献   

14.
Improvement of machinability of Waspaloy via laser-assisted machining   总被引:1,自引:1,他引:0  
Waspaloy is a heat-resistant alloy primarily used in aircraft turbine engines, as forged turbine and compressor disk, which is difficult to machine at room temperature due to excessive tool wear and poor surface finish. Laser-assisted machining (LAM) offers the ability to machine such superalloys more efficiently by locally heating and softening the workpiece material prior to material removal and machining with a conventional single-point cutting tool. A transient, three-dimensional heat transfer model is used for modeling LAM of Waspaloy. The thermal model is validated by comparing the temperature predictions and the surface temperature measurements using an infrared camera. The machinability of Waspaloy under varying conditions is evaluated by examining tool wear, cutting forces, and surface finish. With increasing material removal temperature from room temperature to 300–400°C, the benefit of LAM is demonstrated by a 20% decrease in specific cutting energy, a two- to three-fold improvement in surface roughness, and a 50% increase in ceramic tool life over conventional machining.  相似文献   

15.
Abstract

A plasma enhanced chemical vapour deposition (PECVD) amorphous carbon coating was deposited onto 100Cr6 steel substrates having varying degrees of surface roughness. The samples were subsequently evaluated to determine the correlation between substrate roughness and coating performance. The steel substrates were prepared before coating deposition to attain five different levels of roughness: (a) ground; (b) superfinished (SF); (c) polished to 1000 grit; (d) polished to 220 grit and (e) polished to a 1 μm diamond finish. The aim of the investigation was to determine the degree of finish required for good tribological performance and coating adhesion. The mechanical and tribological properties of the samples were assessed by nanoindentation, ramped load scratch testing, and pin on disk wear testing. Nanoindentation testing was used to determine the hardness of the samples and the relative contributions to the system hardness from the substrate and coating were separated using the model of Korsunsky et al. Nanoindentation testing showed that the coating hardness (when separated from the system hardness) was lower for the samples with the SF substrate than the others: the reasons for this are discussed in the light of Raman measurements on the fractions of diamond-like and graphite-like bonding in the coatings. Ramped load scratch testing was used to determine coating adhesion and the scratch test failure mode. With the exception of the samples with the ground substrate finish, studies of the friction coefficient plots during scratch testing showed little variation between the samples, and SEM imaging revealed a common failure mode of severe spallation at the scratch track border. The samples with the ground substrate showed differences in response between scratches parallel and perpendicular to the grinding direction, with scratches parallel to the grinding direction showing more severe spallation. The average critical load to failure, as determined by the point of first failure in the scanning electron microscope, was lower for the coatings on the SF substrate than the coatings on the 220 grit, 1000 grit and 1 micron finished substrates. The critical load to failure for the samples with ground substrates was lower than the other substrate surface finishes. Pin on disk wear testing of the samples against a steel ball revealed that the major effect of the varying substrate roughness was on the wear of the counterface, with rougher substrate finishes generally resulting in higher wear rates of the counterface, although the smoothest substrate finish, the micrometre finish, also resulted in higher wear. The sample whose substrate was superfinished gave least wear of the counterface and this was therefore the optimum finish for the samples when considering their performance in a tribological couple.  相似文献   

16.
In turning, an accurate gauging of tool wear condition is an essential part of process control due to adverse effects on dimensional tolerance and surface finish quality. When the surface roughness is the primary concern, the conventional measure of tool wear is found to be imprecise because it provides very little information on the wear patterns in tool nose and flank. A tool wear model, developed in this study, represents the wear condition more comprehensively and accurately with relation to the surface roughness. Experimental results validate the model, showing 92% accuracy between the predicted surface roughness and the actual measurements.  相似文献   

17.
The main objective in machining processes is to produce a high-quality surface finish which, however, can be measured only at the end of the machining cycle. A more preferable method would be to monitor the quality during the cycle, what result a real-time, low-cost, and accurate monitoring method that can dynamically adjust the machining parameters and keep the target surface finish. Motivated by this premise, results of investigation on the relationship between emitted sound signal and surface finish during turning process are reported in this paper. Through experiments with AISI 52100 hardened steel, this work shows that such a correlation does exist presenting strong evidences that Mel-Frequency Cepstral Coefficients, extracted from sound energy, can detect different surface roughness levels, what makes it a promising feature for real-time process quality monitoring methods.  相似文献   

18.
Magnesium is one of the lightest metallic materials and is well known and widely used in the aeronautic and aerospace industries. The pieces machined in these industrial fields must satisfy stringent surface roughness requirements to achieve a product quality that conforms to the design specifications. The aim of this investigation is to optimise efficiently the dry turning of magnesium pieces to achieve a surface roughness within technical requirements. A cost-effective and flexible statistical optimisation procedure, which is based on the technical specifications of surface roughness as well as on a robust experimental design, identified different optimal cutting conditions that provide a surface finish which meets the roughness specifications in magnesium parts. Furthermore, as a consequence of such optimisation procedure, the machining time was reduced, and the aerospace companies could select among the optimal operating conditions by also considering productivity, safety and environment criteria to control production of the surfaces finish.  相似文献   

19.
Abrasive water jet (AWJ) machining is characterized by its versatility, i.e., it can be applied to a wide variety of materials. Currently, one important application is for manufacturing gem artifacts, especially agate, which is the largest gemological material produced in the state of Rio Grande do Sul. However, one of the main obstacles to its popularization is the cost associated with the process, due to the high abrasive consumption required for a good quality surface finish. In this sense, this research paper presents a study of the influence of the main process parameters (traverse speed and abrasive mass flow rate) on the surface finish of agates machined by AWJ. The experimental procedure used three different traverse speeds, four abrasive mass flow rate in two different thicknesses of agate’s plates. Surface roughness and angle of striation marks were observed for different depths from the jet entrance surface. Results were analyzed using analysis of variance (ANOVA). Through the study, it was found that the machined surface finish varies according to the depth from the entrance surface of the abrasive jet. Also, it was concluded that the surface finish of the machined surface by AWJ (surface roughness and striation marks) of the agate’s plates machined by AWJ exhibits similar results for both thicknesses tested. ANOVA showed that the traverse speed is more significant than abrasive mass flow rate for the material studied with respect to the surface finish. Thus, for a small material thickness, it is possible to use high traverse speed and low abrasive mass flow rate which makes the process more economical.  相似文献   

20.
Surface finish plays an important role in product quality due to its direct effects on product appearance. Hence, improvement of the surface finish is an essential requirement in industrial products. In an attempt to improve the surface finish of bulk metallic glass (BMG) material, several common methods have been used, such as milling, grinding, and lapping. However, the BMG surface finish has not yet been significantly improved by using these methods. Therefore, this paper proposes sequential abrasive jet polishing (AJP) and annealing processes that can considerably improve the BMG surface finish. In addition, this paper also takes into account optimal parameters for the AJP and annealing processes based on the Taguchi’s L 18 and L 8 orthogonal array experimental results, respectively. The experimental results show that using optimal AJP parameters, the surface roughness (R a) of the ground specimens can be significantly improved from 0.675 to 0.016 μm. After the AJP process, the surface roughness (R a) of the polished specimens can be further improved from 5.7 to 2 nm within an area of 5?×?5 μm by using optimal annealing parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号