首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The dystrophin rod domain is composed of 24 spectrin-like repeats and was thought to act mainly as a flexible spacer between the amino-terminal actin binding domain and carboxyl-terminal membrane-associated domains. We previously demonstrated that a fragment of the dystrophin rod domain also binds F-actin. However, the nature and extent of rod domain association with F-actin is presently unclear. To begin addressing these questions, we characterized two recombinant proteins representing adjacent regions of the dystrophin rod. DYS1416 (amino acids 1416-1880) bound F-actin with a Kd of 14.2 +/- 5.2 microM and a stoichiometry of 1 mol:mol of actin. However, DYS1030 (amino acids 1030-1494) failed to bind F-actin, suggesting that not all rod domain repeats are capable of binding F-actin. Interestingly, DYS1416 corresponds to a unique region of the dystrophin rod rich in basic amino acids, whereas DYS1030 is composed mainly of acidic repeats. This observation suggested that DYS1416 may interact with acidic actin filaments through an electrostatic interaction. Supporting this hypothesis, actin binding by DYS1416 was dramatically inhibited by increasing ionic strength. We suggest that electrostatic interactions between basic spectrin-like repeats and actin filaments may contribute to the actin binding activity of other members of the actin cross-linking protein family.  相似文献   

2.
The thermodynamics and kinetics of actin interaction with Arabidopsis thaliana actin-depolymerizing factor (ADF)1, human ADF, and S6D mutant ADF1 protein mimicking phosphorylated (inactive) ADF are examined comparatively. ADFs interact with ADP.G-actin in rapid equilibrium (k+ = 155 microM-1.s-1 and k- = 16 s-1 at 4 degreesC under physiological ionic conditions). The kinetics of interaction of plant and human ADFs with F-actin are slower and exhibit kinetic cooperativity, consistent with a scheme in which the initial binding of ADF to two adjacent subunits of the filament nucleates a structural change that propagates along the filament, allowing faster binding of ADF in a "zipper" mode. ADF binds in a non-cooperative faster process to gelsolin-capped filaments or to subtilisin-cleaved F-actin, which are structurally different from standard filaments (Orlova, A., Prochniewicz, E., and Egelman, E. H. (1995) J. Mol. Biol. 245, 598-607). In contrast, the binding of phalloidin to F-actin cooperatively inhibits its interaction with ADF. The ADF-facilitated nucleation of ADP.actin self-assembly indicates that ADF stabilizes lateral interactions in the filament. Plant and human ADFs cause only partial depolymerization of F-actin at pH 8, consistent with identical functions in enhancing F-actin dynamics. Phosphorylation does not affect ADF activity per se, but decreases its affinity for actin by 20-fold.  相似文献   

3.
The machinery of eukaryotic protein synthesis is found in association with the actin cytoskeleton. A major component of this translational apparatus, which is involved in the shuttling of aa-tRNA, is the actin-binding protein elongation factor 1alpha (EF-1alpha). To investigate the consequences for translation of the interaction of EF-1alpha with F-actin, we have studied the effect of F-actin on the ability of EF-1alpha to bind to aa-tRNA. We demonstrate that binding of EF-1alpha:GTP to aa-tRNA is not pH sensitive with a constant binding affinity of approximately 0.2 microM over the physiological range of pH. However, the sharp pH dependence of binding of EF-1alpha to F-actin is sufficient to shift the binding of EF-1alpha from F-actin to aa-tRNA as pH increases. The ability of EF-1alpha to bind either F-actin or aa-tRNA in competition binding experiments is also consistent with the observation that EF-1alpha's binding to F-actin and aa-tRNA is mutually exclusive. Two pH-sensitive actin-binding sequences in EF-1alpha are identified and are predicted to overlap with the aa-tRNA-binding sites. Our results suggest that pH-regulated recruitment and release of EF-1alpha from actin filaments in vivo will supply a high local concentration of EF-1alpha to facilitate polypeptide elongation by the F-actin-associated translational apparatus.  相似文献   

4.
We characterized the properties of the interaction between synapsin I and calspectin using purified proteins. The binding assay in the native state using antibodies specific to the tail region of synapsin I revealed that the binding is a high affinity with Kd of 9 nM, which is almost comparable to that of synapsin I to synaptic vesicles and to F-actin. We demonstrated that the head-middle region of synapsin I binds the NH2-terminal domain of beta subunit of calspectin, which also contains an actin binding site. Furthermore, the interaction was significantly inhibited by phosphorylation of synapsin I by cAMP-dependent protein kinase or by Ca2+, calmodulin-dependent protein kinase II. These properties of the interaction between synapsin I and calspectin may help understanding of its modulatory roles in neurotransmitter release.  相似文献   

5.
The Dictyostelium 34 kDa protein is an actin bundling protein composed of 295 amino acids. However, the region(s) of the molecule that bind actin filaments is (are) unknown. Studies of the cosedimentation of 125I-34 kDa protein and F-actin show that the 34 kDa protein binds to F-actin with positive cooperativity and Hill coefficients of 1.9 and 3.0, for filaments 4.9 microm and 0.6 microm, respectively. The Hill coefficient is larger for short filaments that are more efficiently bundled than long filaments, suggesting that one of the binding sites is used in interfilament contacts or contributes to filament orientation within the bundle. Three distinct actin binding sites were identified using a synthetic peptide, protein truncations, and a novel epitope library screening method. The ability to bind actin was assessed by 125I-F-actin overlays under denaturing and nondenaturing conditions, cosedimentation, viscometry, and pyrene-labeled actin disassembly. The three actin binding domains were identified as amino acids 1-123, 193-254, and 279-295. The 62 amino acid domain (193-254) can cosediment with F-actin. The estimated Kapp obtained by the disassembly of pyrene-labeled actin was 0.11 microM and 2.7 microM for the amino acids 1-123 and 279-295, respectively. These results identify three distinct regions of the 34 kDa protein that may contribute to the positive cooperative formation of F-actin bundles.  相似文献   

6.
The atomic model of the F-actin-myosin subfragment 1 complex (acto-S-1) from skeletal muscle suggests that the transition of the complex from a weakly to a strongly binding state, generating mechanical force during the contractile cycle, may involve the attachment of the upper 50-kDa subdomain of myosin subfragment 1 (S-1) to the interface between subdomains 1 and 3 of actin. For the human cardiac myosin, this putative interaction would take place at the ordered loop including Arg403 of the beta-heavy chain sequence, a residue whose mutation into Gln is known to elicit a severe hypertrophic cardiomyopathy caused by a decrease of the rate of the actomyosin ATPase activity. Moreover, in several nonmuscle myosins the replacement of a Glu residue within the homolog loop by Ser or Thr also results in the reduction of the actomyosin ATPase rate that is alleviated by phosphorylation. As an approach to the characterization of the unknown interaction properties of F-actin with this particular S-1 loop region, we have synthesized four 17-residue peptides corresponding to the sequence Gly398-Gly414 of the human beta-cardiac myosin. Three peptides included Arg403 (GG17) or Gln403 (GG17Q) or Ser409 (GG17S) and the fourth peptide (GG17sc) was a scrambled version of the normal GG17 sequence. Using fluorescence polarization, cosedimentation analyses and photocross-linking, we show that the three former peptides, but not the scrambled sequence, directly associate in solution to F-actin, at a nearly physiological ionic strength, with almost identical affinities (Kd approximately 40 microM). The binding strength of the F-actin-GG17 peptide complex was increased fivefold (Kd = 8 microM) in the presence of subsaturating concentrations of added skeletal S-1 relative to actin, without apparent competition between the peptide and S-1. Each of the three actin-binding peptides inhibited the steady-state actin-activated MgATPase of skeletal S-1 by specifically decreasing about twofold the Vmax of the reaction without changing the actin affinity for the S-1-ATP intermediate. Cosedimentation assays indicated the binding of about 0.65 mol peptide/mol actin under conditions inducing 70% inhibition. Collectively, the data point to a specific and stoichiometric interaction of the peptides with F-actin that uncouples its binding to S-1 from ATP hydrolysis, probably by interfering with the proper attachment of the S-1 loop segment to the interdomain connection of actin.  相似文献   

7.
In search for novel actin binding proteins in Dictyostelium discoideum we have isolated a cDNA clone coding for a protein of approximately 50 kDa that is highly homologous to the class of adenylyl cyclase-associated proteins (CAP). In Saccharomyces cerevisiae the amino-terminal part of CAP is involved in the regulation of the adenylyl cyclase whereas the loss of the carboxyl-terminal domain results in morphological and nutritional defects. To study the interaction of Dictyostelium CAP with actin, the complete protein and its amino-terminal and carboxyl-terminal domains were expressed in Escherichia coli and used in actin binding assays. CAP sequestered actin in a Ca2+ independent way. This activity was localized to the carboxyl-terminal domain. CAP and its carboxyl-terminal domain led to a fluorescence enhancement of pyrene-labeled G-actin up to 50% indicating a direct interaction, whereas the amino-terminal domain did not enhance. In polymerization as well as in viscometric assays the ability of the carboxyl-terminal domain to sequester actin and to prevent F-actin formation was approximately two times higher than that of intact CAP. The sequestering activity of full length CAP could be inhibited by phosphatidylinositol 4,5-bisphosphate (PIP2), whereas the activity of the carboxyl-terminal domain alone was not influenced, suggesting that the amino-terminal half of the protein is required for the PIP2 modulation of the CAP function. In profilin-minus cells the CAP concentration is increased by approximately 73%, indicating that CAP may compensate some profilin functions in vivo. In migrating D. discoideum cells CAP was enriched at anterior and posterior plasma membrane regions. Only a weak staining of the cytoplasm was observed. In chemotactically stimulated cells the protein was very prominent in leading fronts. The data suggest an involvement of D. discoideum CAP in microfilament reorganization near the plasma membrane in a PIP2-regulated manner.  相似文献   

8.
9.
The bovine papillomavirus E5 protein forms a stable complex with the cellular platelet-derived growth factor (PDGF) beta receptor, resulting in receptor activation and cell transformation. Amino acids in both the putative transmembrane domain and extracytoplasmic carboxyl-terminal domain of the E5 protein appear important for PDGF receptor binding and activation. Previous analysis indicated that the transmembrane domain of the receptor was also required for complex formation and receptor activation. Here we analyzed receptor chimeras and point mutants to identify specific amino acids in the PDGF beta receptor required for productive interaction with the E5 protein. These receptor mutants were analyzed in murine Ba/F3 cells, which do not express endogenous receptor. Our results confirmed the importance of the transmembrane domain of the receptor for complex formation, receptor tyrosine phosphorylation, and mitogenic signaling in response to the E5 protein and established that the threonine residue in this domain is required for these activities. In addition, a positive charge in the extracellular juxtamembrane domain of the receptor was required for E5 interaction and signaling, whereas replacement of the wild-type lysine with either a neutral or acidic amino acid inhibited E5-induced receptor activation and transformation. All of the receptor mutants defective for activation by the E5 protein responded to acute treatment with PDGF and to stable expression of v-Sis, a form of PDGF. The required juxtamembrane lysine and transmembrane threonine are predicted to align precisely on the same face of an alpha helix packed in a left-handed coiled-coil geometry. These results establish that the E5 protein and v-Sis recognize distinct binding sites on the PDGF beta receptor and further clarify the nature of the interaction between the viral transforming protein and its cellular target.  相似文献   

10.
We have used isotope-edited nuclear magnetic resonance spectroscopy, binding studies, and ATPase activity assays to investigate the interaction with F-actin of the 10 kDa C-terminal 658C fragment of chicken gizzard caldesmon and two site-directed mutants of this fragment. Simultaneous dual-sited contacts with F-actin are observed for the segments of the 658C sequence flanking tryptophan residues 692 and 722. Competition experiments showed that both 658C contacts with actin are displaced by substoichiometric concentrations of the short inhibitory region of troponin-I indicative of different binding sites on actin for these regions of troponin-I and caldesmon. Substitution of caldesmon serine-702 by aspartic acid within the spacer region linking the two actin contacts of 658C led to weaker binding but with retention of equivalent affinity for each interaction site. Differential binding affinity of the two sites was achieved by replacement of the sequence Glu691-Trp-Leu-Thr-Lys-Thr696 by Pro-Gly-His-Tyr-Asn-Asn. Consistent with these data, the concentration of this Cg1 mutant required to achieve 50% inhibition of actin-tropomyosin-activated myosin ATPase was 4-fold greater than found for the 658C fragment. Although calmodulin binding to Cg1 was observed, calmodulin proved ineffective in relieving the inhibition induced by the binding of this mutant to actin. These results are discussed in light of the actin contacts which are involved in the inhibitory activity possessed by different regions of the C-terminus of caldesmon.  相似文献   

11.
The RHO1 gene encodes a homolog of mammalian RhoA small G protein in the yeast Saccharomyces cerevisiae. We have shown that Bni1p is one of the downstream targets of Rho1p and regulates reorganization of the actin cytoskeleton through the interaction with profilin, an actin monomer-binding protein. A Bni1p-binding protein was affinity purified from the yeast cytosol fraction and was identified to be Tef1p/Tef2p, translation elongation factor 1alpha (EF1alpha). EF1alpha is an essential component of the protein synthetic machinery and also possesses the actin filament (F-actin)-binding and -bundling activities. EF1alpha bound to the 186 amino acids region of Bni1p, located between the FH1 domain, the proline-rich profilin-binding domain, and the FH2 domain, of which function is not known. The binding of Bni1p to EF1alpha inhibited its F-actin-binding and -bundling activities. The BNI1 gene deleted in the EF1alpha-binding region did not suppress the bni1 bnr1 mutation in which the actin organization was impaired. These results suggest that the Rho1p-Bni1p system regulates reorganization of the actin cytoskeleton through the interaction with both EF1alpha and profilin.  相似文献   

12.
13.
Postnatal handling alters hypothalamic-pituitary-adrenal (HPA) responses to stress in the rat. Handling also increases hippocampal glucocorticoid receptor density, and this effect appears to form, in part at least, the basis for the effect of handling on HPA responsiveness to stress. In the present study we have used in situ hybridization techniques to examine the effect of postnatal handling on the expression of glucocorticoid and mineralocorticoid receptor mRNAs in various cell fields of the dorsal hippocampus in adult rats. Grain counting analysis over individual cells showed that postnatal handling significantly increased (40-50%) glucocorticoid receptor mRNA in all hippocampal cell fields. In contrast, handling had no effect on mineralocorticoid receptor mRNA expression. These findings are consistent with the results of receptor binding studies showing that handling increases hippocampal glucocorticoid receptor, but not mineralocorticoid receptor density. Thus, the increase in glucocorticoid receptor binding in handled animals is likely associated with altered rates of receptor biosynthesis. Moreover, the handling effect is quite specific, altering glucocorticoid receptor, but not mineralocorticoid receptor mRNA expression. The mechanism(s) whereby glucocorticoid receptor gene expression is permanently increased by postnatal handling remains to be determined.  相似文献   

14.
Close to the bases of the photoreceptive microvilli, arthropod photoreceptors contain a dense network of endoplasmic reticulum that is involved in the regulation of the intracellular calcium concentration, and in the biogenesis of the photoreceptive membrane. Here, we examine the role of the cytoskeleton in organizing this submicrovillar endoplasmic reticulum in honeybee photoreceptors. Immunofluorescence microscopy of taxol-stabilized specimens, and electron-microscopic examination of high-pressure frozen, freeze-substituted retinae demonstrate that the submicrovillar cytoplasm lacks microtubules. The submicrovillar region contains a conspicuous F-actin system that codistributes with the submicrovillar endoplasmic reticulum. Incubation of retinal tissue with cytochalasin B leads to depolymerization of the submicrovillar F-actin system, and to disorganization and disintegration of the submicrovillar endoplasmic reticulum, indicating that an intact F-actin cytoskeleton is required to maintain the architecture of this domain of the endoplasmic reticulum. We have also developed a permeabilized cell model in order to study the physiological requirements for the interaction of the endoplasmic reticulum with actin filaments. The association of submicrovillar endoplasmic reticulum with actin filaments appears to be independent of ATP, Ca2+ and Mg2+, suggesting a tight static anchorage.  相似文献   

15.
The small GTPases Cdc42 and Rac regulate a variety of biological processes, including actin polymerization, cell proliferation, and JNK/mitogen-activated protein kinase activation, conceivably via distinct effectors. Whereas the effector for mitogen-activated protein kinase activation appears to be p65PAK, the identity of effector(s) for actin polymerization remains unclear. We have found a putative effector for Drosophila Cdc42, Genghis Khan (Gek), which binds to Dcdc42 in a GTP-dependent and effector domain-dependent manner. Gek contains a predicted serine/threonine kinase catalytic domain that is 63% identical to human myotonic dystrophy protein kinase and has protein kinase activities. It also possesses a large coiled-coil domain, a putative phorbol ester binding domain, a pleckstrin homology domain, and a Cdc42 binding consensus sequence that is required for its binding to Dcdc42. To study the in vivo function of gek, we generated mutations in the Drosophila gek locus. Egg chambers homozygous for gek mutations exhibit abnormal accumulation of F-actin and are defective in producing fertilized eggs. These phenotypes can be rescued by a wild-type gek transgene. Our results suggest that this multidomain protein kinase is an effector for the regulation of actin polymerization by Cdc42.  相似文献   

16.
17.
Several actin-binding proteins participate in the morphological changes that occur during amoeboid movement. The gene encoding one of these proteins, the gelation factor ABP-120, was identified and characterized from trophozoites of Entamoeba histolytica. The sequence contains 2574 nucleotides, with an open reading frame of 858 amino acids, giving a protein of 93 kDa belonging to the spectrin family. The N-terminal domain of ABP-120 from E. histolytica revealed a consensus site for actin binding homologous to the actin-binding sites of ABP-120 of Dictyostelium discoideum, alpha-actinin and spectrin. Analysis of the central domain revealed the presence of four repeats of a 73-amino-acid motif constituting 31% of the protein. In addition, a stretch of 105 amino acids was highly divergent when compared with the C-terminal domain of D. discoideum ABP-120. This sequence showed short motifs that are homologous to microtubule-binding domains. We found that ABP-120 from E. histolytica binds to F-actin. In addition, upon motility of the parasite, this protein localized in the pseudopod and the uroid region, implying a role for ABP-120 in movement and capping of surface receptors in E. histolytica.  相似文献   

18.
Structurally related tetratricopeptide repeat motifs in steroid receptor-associated immunophilins and the STI1 homolog, Hop, mediate the interaction with a common cellular target, hsp90. We have identified the binding domain in hsp90 for cyclophilin 40 (CyP40) using a two-hybrid system screen of a mouse cDNA library. All isolated clones encoded the intact carboxyl terminus of hsp90 and overlapped with a common region corresponding to amino acids 558-724 of murine hsp84. The interaction was confirmed in vitro with bacterially expressed CyP40 and deletion mutants of hsp90beta and was delineated further to a 124-residue COOH-terminal segment of hsp90. Deletion of the conserved MEEVD sequence at the extreme carboxyl terminus of hsp90 precludes interaction with CyP40, signifying an important role for this motif in hsp90 function. We show that CyP40 and Hop display similar interaction profiles with hsp90 truncation mutants and present evidence for the direct competition of Hop and FK506-binding protein 52 with CyP40 for binding to the hsp90 COOH-terminal region. Our results are consistent with a common tetratricopeptide repeat interaction site for Hop and steroid receptor-associated immunophilins within a discrete COOH-terminal domain of hsp90. This region of hsp90 mediates ATP-independent chaperone activity, overlaps the hsp90 dimerization domain, and includes structural elements important for steroid receptor interaction.  相似文献   

19.
20.
The synapsins are a family of synaptic vesicle phosphoproteins whose role seems to be to limit the availability of small synaptic vesicles for exocytosis by linking them to the cytoskeleton. One member of the family, synapsin I, has been shown to bind calmodulin in a Ca(2+)-dependent manner. In this study, we have examined whether or not calmodulin can regulate one of the activities of synapsin I, namely, its interaction with F-actin. Synapsin I is an actin bundling protein: this activity is controlled by phosphorylation. Here we show that calmodulin in the presence of Ca2+ is a competitive inhibitor of both actin binding and bundling by synapsin I. Under the conditions of our assay (0.45 microM synapsin I, 4 microM F-actin), half-maximal inhibition of actin binding and bundling by unphosphorylated synapsin I was found with 4.3 and 3.7 microM calmodulin, respectively. The actin binding activity of synapsin I phosphorylated by cAMP-dependent protein kinase or by calmodulin-dependent protein kinase II showed similar sensitivity to calmodulin inhibition to unphosphorylated synapsin I. However, inhibition of bundling was potentiated. Half-maximal inhibition of bundling by synapsin I phosphorylated by cAMP-dependent kinase was achieved at approximately 0.5 microM calmodulin. Half-maximal inhibition of bundling by synapsin I phosphorylated by calmodulin-dependent protein kinase II was achieved at less than 0.2 microM calmodulin, although the maximum binding under the conditions of the assay was lower.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号