首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Optically active (S)-flurbiprofen was produced fed-batch-wisely in a lipase-catalyzed dispersed aqueous phase reaction system induced by succinyl β-cyclodextrin (suβ-CD). A highly concentrated 480 mM (S)-flurbiprofen, corresponding to 117.0 g/l, with an enantiomeric excess of 0.98 and conversion yield of 0.48 was obtained. (S)-Flurbiprofen produced in an inclusion complex form with suβ-CD was extractively purified using three-step procedures: decomplexation of (S)-flurbiprofen and residual (R)-flurbiprofen ethyl ester ((R)-FEE) using the ethyl acetate, dissolution of (S)-flurbiprofen from (R)-FEE using a sodium bicarbonate solution, and selective precipitation of (S)-flurbiprofen using 2-propanol. Consequently, an extremely high concentration of 420 mM (S)-flurbiprofen with an optical purity higher than 98% was recovered after purification.  相似文献   

2.
Lipases from Candida rugosa, Candida antartica B and Carica papaya are employed as the biocatalyst for the hydrolytic resolution of methyl 2-fluoro-2-arylpropionates in water-saturated isooctane, in which excellent to good enantioselectivity without the formation of byproducts is obtained for the papaya lipase when using (R,S)-2-fluoronaproxen methyl ester (1) and methyl (R,S)-2-fluoro-2-(4-methoxyphenyl)propionate (2), but not methyl (R,S)-2-fluoro-2-(naphth-1-yl)propionate (3) as the substrates. The thermodynamic analysis indicates that the enantiomer discrimination for the papaya lipase is driven by the difference in activation enthalpy for compound 1, 2 or (R,S)-naproxen methyl ester (4). The kinetic analysis also demonstrates that in comparison with (S)-4, the insertion of the 2-fluorine moiety in (R)-1 has increased k2, but not Km, and consequently the lipase activity.  相似文献   

3.
This study was investigated for the enantioselective separation of (S)-ibuprofen using the ionic liquid in the microfluidic device. A stable and thin ionic liquid flow (ILF) was made by controlling the flow rate of the ILF in the microfluidic channel. In addition, coupling lipase as a biocatalyst with the ILF based on the microfluidic device showed the facilitative and selective transport of (S)-ibuprofen across the ILF, indicating successful optical resolution of a racemic mixture. Subsequently, the enantioselectivity was evaluated in the transport ratio (η) of (R)- and (S)-ibuprofen, the optical resolution ratio () and enantiomeric excess of (S)-ibuprofen (eeS).  相似文献   

4.
It has been found that enantioselectivity of lipases is strongly modified when their immobilization is performed by involving different areas of the enzyme surface, by promoting a different degree of multipoint covalent immobilization or by creating different environments surrounding different enzyme areas. Moreover, selectivity of some immobilized enzyme molecules was much more modulated by the experimental conditions than other derivatives. Thus, some immobilized derivatives of Candida rugosa (CRL) and C. antarctica-B (CABL) lipases are hardly enantioselective in the hydrolysis of chiral esters of (R,S)-mandelic acid under standard conditions (pH 7.0 and 25°C) (E<2). However, other derivatives of the same enzymes exhibited a very good enantioselectivity under nonstandard conditions. For example, CRL adsorbed on PEI-coated supports showed a very high enantio-preference towards S-isomer (E=200) at pH 5. On the other hand, CABL adsorbed on octyl-agarose showed an interesting enantio-preference towards the R-isomer (E=25) at pH 5 and 4°C. These biotransformations are catalyzed by isolated lipase molecules acting on fully soluble substrates and in the absence of interfacial activation against external hydrophobic interfaces. Under these conditions, lipase catalysis may be associated to important conformational changes that can be strongly modulated via biocatalyst and biotransformation engineering. In this way, selective biotransformations catalyzed by immobilized lipases in macro-aqueous systems can be easily modulated by designing different immobilized derivatives and reaction conditions.  相似文献   

5.
The enantioselective microbial reduction of 6-oxo-8-[4-[4-(2-pyrimidinyl)-1-piperazinyl]butyl]-8-azaspiro[4.5]decane-7,9-dione (1) to either of the corresponding (S)- and (R)-6-hydroxy-8-[4-[4-(2-pyrimidinyl)-1-piperazinyl]butyl]-8-azaspiro[4.5]decane-7,9-diones (2 and 3, respectively) is described. The NADP+-dependent (R)-reductase (RHBR) which catalyzes the reduction of 6-ketobuspirone (1) to (R)-6-hydroxybuspirone (3) was purified to homogeneity from cell extracts of Hansenula polymorpha SC 13845. The subunit molecular weight of the enzyme is 35,000 kDa based on sodium dodecyl sulfate gel electrophoresis and the molecular weight of the enzyme is 37,000 kDa as estimated by gel filtration chromatography. (R)-reductase from H. polymorpha was cloned and expressed in Escherichia coli. To regenerate the cofactor NADPH required for reduction we have cloned and expressed the glucose-6-phosphate dehydrogenase gene from Saccharomyces cerevisiae in E. coli. The NAD+-dependent (S)-reductase (SHBR) which catalyzes the reduction of 6-ketobuspirone (1) to (S)-6-hydroxybuspirone (2) was purified to homogeneity from cell extracts of Pseudomonas putida SC 16269. The subunit molecular weight of the enzyme is 25,000 kDa based on sodium dodecyl sulfate gel electrophoresis. The (S)-reductase from P. putida was cloned and expressed in E. coli. To regenerate the cofactor NADH required for reduction we have cloned and expressed the formate dehydrogenase gene from Pichia pastoris in E. coli. Recombinant E. coli expressing (S)-reductase and (R)-reductase catalyzed the reduction of 1 to (S)-6-hyroxybuspirone (2) and (R)-6-hyroxybuspirone (3), respectively, in >98% yield and >99.9% e.e.  相似文献   

6.
S-acetylthio-2-methylpropionic acid (S-AMPA) is an important chiral intermediary for numerous hypertension drugs such as captopril. S-AMPA can be produced by hydrolyzing the corresponding racemic methyl MAMP (S,R-methyl-β-acetylthioisobutyrate) by lipases or esterases that have the appropriate stereo specificity. Psudomonas fluorescens IFO 12055 possessing a highly specific lipase was used to process this reaction in the form of immobilized cells. Reaction kinetic and immobilization methods were also studied. Strong product inhibition was observed, that is, at 3% S-AMPA (namely 183 mM), activity was reduced by 50%. Spontaneous hydrolysis of the ester and thioester bonds was also observed, and was independent of the cells. Thus, reaction selectivity and yield must be optimized through adjusting the substrate concentration and total biocatalyst activity. Conventional calcium alginate (3% w/w) encapsulation was modified by adding 3% w/w polyethyleneimine (PEI) and cross-linked by a biologically derived agent, genipin (5.6 mM). This method was found to be satisfactory to produce stable and functioning biocatalyst and can maintain high reactivity for repeated 25 batches with e.e. values above 90%.  相似文献   

7.
A recombinant yeast Pichia pastoris carrying the gene encoding epoxide hydrolase (EH) of Rhodotorula glutinis was constructed and used for producing (S)-styrene oxide by enantioselective hydrolysis of racemic mixtures of styrene oxides. The EH gene was obtained by PCR amplification of cDNA of R. glutinis and integrated into the chromosomal DNA of P. pastoris to express EH under the control of AOX promoter. The recombinant yeast has a high hydrolytic activity toward (R)-styrene oxide as 358 nmol min−1 (mg cell)−1, which is about 10-fold higher than that of wild type R. glutinis. When kinetic resolution was conducted by the recombinant yeast at a high initial epoxides concentration of 526 mM that constitutes an epoxide–water two-liquid phase, chiral (S)-styrene oxide with an enantiomeric excess (e.e.) higher than 98% was obtained as 36% yield (theoretical, 50%) at 16 h.  相似文献   

8.
Purified lipase from Mucor miehei (MML) has been covalently immobilized on different epoxy resins (standard hydrophobic epoxy resins, epoxy-ethylenediamine, epoxy-iminodiacetic acid, epoxy-copper chelates) and adsorbed via interfacial activation on octadecyl-Sepabeads support (fully coated with very hydrophobic octadecyl groups). These immobilized enzyme preparations were used under slightly different conditions (temperature ranging from 4 to 25 °C and pH values from 5 to 7) in the hydrolytic resolution of (R,S)-2-butyroyl-2-phenylacetic acid.

Different catalytic properties (activity, specificity, enantioselectivity) were found depending on the particular support used. For example, the epoxy-iminodiacetic acid-Sepabeads gave the most active preparation at pH 7 while, at pH 5, the ethylenediamine-Sepabeads was superior.

More interestingly, the enantiomeric ratio (E) also depends strongly on the immobilized preparation and the conditions employed. Thus, the octadecyl-MML preparation was the only immobilized enzyme derivative which exhibited enantioselectivity towards R isomer (with E values ranging from 5 at 4 °C and pH 7 to 1.2 at pH 5 and 25 °C).

The other immobilized preparations, in contrast, were S selective. Immobilization on iminodiacetic acid-Sepabeads afforded the catalyst with the highest enantioselectivity (E=59 under optimum conditions).  相似文献   


9.
Enantioselective reductions of p-X-C6H4C(O)CH2N3 (X = H, Cl, Br, CH3, OCH3) mediated by Rhodotorula glutinis and Geotrichum candidum afforded the corresponding alcohols with complementary R and S configurations, respectively, in excellent yield and enantiomeric excesses. The obtained (R)-azidoalcohols are important starting materials for preparation of natural products and valuable pharmaceutical compounds such as (R)-Tembamide and (R)-Aegeline.  相似文献   

10.
Acinetobacter junii SY-01 producing a lipase enantioselectively hydrolyzing 1,3-dioxolane derivatives was isolated from water sludge sample and the effect of solvent, acyl donor, vinyl acetate concentration, substrate concentration, operating temperature and immobilization on activity and enantioselectivity was studied for the resolution of 1,3-dioxolane derivatives through transesterification reaction using a lipase from the isolated strain. Best selectivity was obtained at lower substrate concentration (3–5 mM), higher vinyl acetate concentration (500–1000 mM) and lower temperature (30–40 °C) in the reaction mixture. Lipase immobilized onto Accurel MP-1000 (micro-porous polypropylene) gave the best results and the reactivity was about 29-fold higher than the free enzyme without the decrease of enantioselectivity. Resolution of 1,3-dioxolane derivatives was carried out in flask scale containing 100 ml solvents using the lipase immobilized onto Accurel MP-1000. In this reaction, the yield and enantiomeric excess of the remaining (2R, 4S)-alcohol were 31.2% and 98.2%, respectively. This result suggests that it can be used as an alternative method, compared to the present synthetic method, for the production of optically pure (2R, 4S)-itraconazole.  相似文献   

11.
A crude lipase prepared from Carica pentagona Heilborn latex was explored as an effective enantioselective biocatalyst for the hydrolytic resolution of (R,S)-naproxen 2,2,2-trifluoroethyl ester in water-saturated organic solvents. Comparisons of the enzyme performance with that from Carica papaya lipase indicated that both lipases showed low tolerance to the hydrophilic solvent and were inhibited by (S)-naproxen and 2,2,2-trifluoroethanol. Improvements on the enzyme activity and enantioselectivty were demonstrated when both lipases in partially purified forms were employed. By using the thermodynamic analysis, the enantiomeric discrimination was mainly driven by the difference of activation enthalpy for all reaction systems except for employing Carica papaya lipase as the biocatalyst for (R,S)-fenoprofen 2,2,2-trifluoroethyl thioester.  相似文献   

12.
Covalent immobilization of pure lipases A and B from Candida rugosa on agarose and silica is described. The immobilization increases the half-life of the biocatalysts ( ) with respect to the native pure lipases ( ). The percentage immobilization of lipases A and B is similar in both supports (33–40%). The remaining activity of the biocatalysts immobilized on agarose (70–75%) is greater than that of the enzymatic derivatives immobilized on SiO2 (40–50%). The surface area and the hydrophobic/hydrophilic properties of the support control the lipase activity of these derivatives. The thermal stability of the immobilized lipase A derivatives is greater than that of lipase B derivatives. The nature of the support influences the thermal deactivation profile of the immobilized derivatives. The immobilization in agarose (hydrophilic support) gives biocatalysts that show a greater initial specific reaction rate than the biocatalysts immobilized in SiO2 (hydrophobic support) using the hydrolysis of the esters of (R) or (S) 2-chloropropanoic and of (R,S) 2-phenylpropanoic acids as the reaction test. The enzymatic derivatives are active for at least 196 h under hydrolysis conditions. The stereospecificity of the native and the immobilized enzymes is the same.  相似文献   

13.
Pyroglutamic acid esters, both (S)- and (R)-enantiomers, have been studied as substrates of the Candida antarctica lipase B catalyzed amidation in anhydrous organic solvents. They behaved as very good substrates when primary amines or ammonia were used as nucleophiles, affording the corresponding secondary and primary amides, respectively, but did not react with secondary amines. The reaction was enantioselective for the (R)-enantiomer of chiral amines although little kinetic difference was observed between (S)- and (R)-pyroglutamates as acyl donors. As an example of an infrequent reaction, free (S)-pyroglutamic acid may also act as a substrate of the reaction, but is much less reactive than its esters.  相似文献   

14.
Synthesis of lobucavir prodrug, L-valine, [(1S,2R,3R)-3-(2-amino-1,6-dihydro-6-oxo-9H-purin-9-yl)-2-(hydroxymethyl)cyclobutyl]methyl ester monohydrochloride (BMS 233866), requires regioselective coupling of one of the two hydroxyl groups of lobucavir (BMS 180194) with valine. Either hydroxyl group of lobucavir could be selectively aminoacylated with valine by using enzymatic reactions. N-[(Phenylmethoxy)carbonyl]-L-valine, [(1R,2R,4S)-2-(2-amino-6-oxo-1H-purin-9-yl)-4-(hydroxymethyl)cyclobutyl]methyl ester (3, 82.5% yield), was obtained by selective hydrolysis of N,N′-bis[(phenylmethoxy)carbonyl]bis[L-valine], O,O′-[(1S,2R,3R)-3-(2-amino-6-oxo-1H-purin-9-yl)cyclobuta-1,2-diyl]methyl ester (1) with lipase M, and L-valine, [(1R,2R,4S)-2-(2-amino-1,6-dihydro-6-oxo-9H-purin-9-yl)-4-(hydroxymethyl)cyclobutyl]methyl ester monohydrochloride (4, 87% yield) was obtained by hydrolysis of bis[L-valine], O,O′-[(1S,2R,3R)-3-(2-amino-6-oxo-1H-purin-9-yl)cyclobuta-1,2-diyl]methyl ester, dihydrochloride (2), with lipase from Candida cylindracea. The final intermediate for lobucavir prodrug, N-[(phenylmethoxy)carbonyl]-L-valine, [(1S,2R,4R)-3-(2-amino-6-oxo-1H-purin-9-yl)-2-(hydroxymethyl)cyclobutyl]methyl ester (5), could be obtained by transesterification of lobucavir using ChiroCLEC™ BL (61% yield), or more selectively by using immobilized lipase from Pseudomonas cepacia (84% yield).  相似文献   

15.
Biocatalytic resolution of 3-(2′-nitrophenoxy)propylene oxide (1a), 3-(3′-nitrophenoxy)propylene oxide (1b) and 3-(4′-nitrophenoxy)propylene oxide (1c) were exploited by using lyophilized cells of yeast Trichosporon loubierii ECU1040 with epoxide hydrolase (EH) activity, which preferentially hydrolyzes (S)-enantiomers of the epoxides (1a–c), yielding (S)-diols and (R)-epoxides. The activity increased as the nitro group in the phenyl ring was shifted from 4′-position (1c) to 2′-position (1a). When the substrate concentration of 1a was increased from 10 to 80 mM, the E-value increased at first, until reaching a peak at 40 mM, and then decreased at higher concentrations (>40 mM). The optically active epoxide (R)-1a was prepared at gram-scale (97% ee, 41% yield). Furthermore, a simple method was developed to predict the enantiomeric excess of substrate (ees) at any time of the whole reaction course based on the ees value determined at a certain reaction time at a relatively lower substrate concentration. This will be helpful for terminating the reaction at a proper time to get both higher optical purity and higher yield of the remaining epoxides.  相似文献   

16.
We have developed the economical and convenient biocatalytic process for the preparation of (R)-1,3-butanediol (BDO) by stereo-specific microbial oxido-reduction on an industrial scale. (R)-1,3-BDO is an important chiral synthon for the synthesis of various optically active compounds such as azetidinone derivatives lead to penem and carbapenem antibiotics.

We studied on two approaches to obtain (R)-1,3-BDO. The first approach was based on enzyme-catalyzed asymmetric reduction of 4-hydroxy-2-butanone; the second approach was based on enantio-selective oxidation of the undesired (S)-1,3-BDO in the racemate. As a result of screening for yeasts, fungi and bacteria, the enzymatic resolution of racemic 1,3-BDO by the Candida parapsilosis IFO 1396, which showed differential rates of oxidation for two enantiomers, was found to be the most practical process to produce (R)-1,3-BDO with high enantiomeric excess and yield.

We characterized the (S)-1,3-BDO dehydrogenase purified from a cell-free extract of C. parapsilosis. This enzyme was found to be a novel secondary alcohol dehydrogenase (CpSADH). We have attempted to clone and characterize the gene encoding CpSADH and express it in Escherichia coli. The CpSADH activity of a recombinant E. coli strain was more than two times higher than that of C. parapsilosis. The production yield of (R)-1,3-BDO from the racemate increased by using the recombinant E. coli strain. Interestingly, we found that the recombinant E. coli strain catalyzed the reduction of ethyl 4-chloro-3-oxo-butanoate to ethyl (R)-4-chloro-3-hyroxy-butanoate with high enantiomeric excess.  相似文献   


17.
An enantioselective lipase gene (esf) for the kinetic resolution of optically active (S)-flurbiprofen was cloned from the new strain Serratia marcescens ES-2. The esf gene was composed of a 1,845-bp open reading frame encoding 614 amino acid residues with a calculated molecular mass of 64,978 Da. The lipase expressed in E. coli was purified by a three-step procedure, and it showed preferential substrate specificity toward the medium-chain-length fatty acids. The esf gene encoding the enantioselective lipase was reintroduced into the parent strain S. marcescens ES-2 for secretory overexpression. The transformant S. marcescens BESF secreted up to 217 kU/ ml of the enantioselective lipase, about 54-fold more than the parent strain, after supplementing 3.0% Triton X-207. The kinetic resolution of (S)-flurbiprofen was carried out even at an extremely high (R,S)-flurbiprofen ethyl ester [(R,S)-FEE] concentration of 500 mM, 130 kU of the S. marcescens ES-2 lipase per mmol of (R,S)-FEE, and 1,000 mM of succinyl beta-cyclodextrin as the dispenser at 37 degrees C for 12 h, achieving the high enantiomeric excess and conversion yield of 98% and 48%, respectively.  相似文献   

18.
Preparation of (2S, 3R)-methyl 3-phenylglycidate via enantioselective hydrolysis of racemic phenylglycidate was carried out using whole cells of Pseudomonas putida. Under optimal conditions (2S, 3R)-methyl-3-phenylglycidate could be got with ee value 99 and 48% chemical yield.  相似文献   

19.
A highly enantioselective (R)-ester hydrolase was partially purified from a newly isolated bacterium, Acinetobacter sp. CGMCC 0789, whose resting cells exhibited a highly enantioselective activity toward the acetate of (4R)-hydroxy-3-methyl-2-(2-propynyl)- cyclopent-2-enone (R-HMPC). The optimum pH and temperature of the partially purified enzyme were 8.0 and 60 °C, respectively. The enantioselectivity of the crude enzyme was increased by 1.2-fold from 16 to 20 when the reaction temperature was raised from 30 to 60 °C. The activity of the crude enzyme was enhanced by 4.1-fold and the enantioselectivity (E-value) was markedly enhanced by 4.3-fold from 16 to 68 upon addition of a cationic detergent, benzethonium chloride [(diisobutyl phenoxyethoxyethyl) dimethyl benzylammoniom chloride]. The hydrolysis of 52 mM (R,S)-HMPC acetate to (R)-HMPC was completed within 8 h, with optical purity of 91.4% eep and conversion of 49%.  相似文献   

20.
The optimization of a continuous enzymatic reaction yielding (R)-(−)-phenylacetylcarbinol ((R)-PAC), a key intermediate of the (1R,2S)-(−)-ephedrine synthesis, is presented. We compare the suitability of different mutants of the pyruvate decarboxylase (PDC) from Zymomonas mobilis with respect to their application in biotransformation using pyruvate or acetaldehyde and benzaldehyde as substrates, respectively. Starting from 90 mM pyruvate and 30 mM benzaldehyde, (R)-PAC was obtained with a space time yield of 27.4 g/(L·day) using purified PDCW392I in an enzyme-membrane reactor. Due to the high stability of the mutant enzymes PDCW392I and PDCW392M towards acetaldehyde, a continuous procedure using acetaldehyde instead of pyruvate was developed. The kinetic results of the enzymatic synthesis starting from acetaldehyde and benzaldehyde demonstrate that the carboligation to (R)-PAC is most efficiently performed using a continuous reaction system and feeding both aldehydes in equimolar concentration. Starting from an inlet concentration of 50 mM of both aldehydes, (R)-PAC was obtained with a space-time yield of 81 g/(L·day) using the mutant enzyme PDCW392M. The new reaction strategy allows the enzymatic synthesis of (R)-PAC from cheap substrates free of unwanted by-products with potent mutants of PDC from Z. mobilis in an aqueous reaction system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号