共查询到17条相似文献,搜索用时 62 毫秒
1.
高铁钢轨表面图像具有光照变化、反射不均、特征少等特点,使得缺陷自动检测极为困难。为了在高速运动过程中,从复杂的钢轨表面图像中分割出缺陷,根据钢轨表面图像具有沿钢轨方向像素值基本不变的特征,建立钢轨表面图像背景模型,提出了基于背景差分的钢轨表面缺陷检测算法,主要包括钢轨区域提取、背景建模差分、阈值分割和图像滤波4个步骤,其主要特点是将视频监控中的背景差分法推广到缺陷图像分割领域,同时借助自适应阈值分割和滤波技术,在一定程度上,解决了铁轨表面缺陷分割过程中图像光照变化、反射不均、特征少等不利因素的影响。实验仿真和现场测试结果均表明,该方法对块状缺陷能很好地识别,召回率和准确率分别达96%和80.1%。 相似文献
2.
3.
针对传统Otsu算法对灰度直方图中仅存在"单峰"的图像难以分割的问题,提出一种分类加权的Otsu分割算法。该方法通过对Otsu算法的两项类间方差进行分析,对每项类间方差以及整体方差分别引入加权系数,并给出了加权系数的自适应选取方式。实验表明,此方法对缺陷灰度值大于平均灰度值,或者缺陷灰度值小于平均灰度值的"单峰"缺陷图像都能实现有效分割。 相似文献
4.
5.
基于Otsu准则和直线截距直方图的阈值分割 总被引:2,自引:3,他引:2
对二维Otsu法中类间离散度测度进行了分析,发现按该算法对被噪声污染图像的二维直方图进行划分时,所得两类的类内均值点容易远离主对角线,因而抗噪声能力不足。针对以上情况,本文提出了一种新算法,该算法基于二维直方图中直线阈值分割的思想,利用像素点的二维信息直接建立阈值直线的截距直方图;然后应用Otsu准则对该一维直方图求解最佳截距阈值,并应用该阈值和二维信息完成图像分割。对提出的算法与传统二维Otsu法进行了比较和分析,结果表明:提出的算法可以有效避免传统算法在抗噪方面的缺陷,当实验图像的噪声方差大于0.003且逐渐增加时,提出的算法抗噪表现稳健;另外,提出的算法计算阈值的速度比基于二维Otsu法的直分法和直线阈值法快2个数量级以上,占用内存空间更少。因而提出的算法是一种抗噪稳健且快速有效的阈值分割算法,更适于实时应用。 相似文献
6.
针对目前基于RGB模型的干枣彩色图像研究中的一系列问题,提取干枣图像大小与实际大小相差较大,算法复杂、速度慢,很难达到在线检测的要求,提出一种利用机器视觉技术以提取干枣图像目标的新方法,分别统计R、G、B各分量的灰度值,绘制相应直方图;通过分析比较,选取R-B分量灰度直方分布图作为确定阈值分割的依据,利用大津法自适应求出阈值,然后提出区域阈值分割方法,并对干枣图像进行阈值分割。多次实验证明,利用该算法提取干枣大小与实际大小非常接近,稳定性高,检测速度快,可以满足进行干枣的形状、表面缺陷等检测要求,能够满足机器视觉技术在线检测要求。 相似文献
7.
几种图像分割阈值选取方法的比较与研究 总被引:17,自引:0,他引:17
对几种常用的阈值选取方法进行了理论分析与比较,并以基于面结构光投影法的三维物体形状检测技术研究为背景,从实验角度对类间方差法、一二维最大熵法和模糊阈值分割法等图像阈值分割方法的性能进行了验证。 相似文献
8.
对金属表面缺陷中的轧入氧化皮、斑点和划痕3种缺陷检测设计了一种有效方法.首先将目标图片进行灰度值归一化增强图像,提高其视觉效果方便后续图像处理.然后应用改进型脉冲耦合神经网络图像分割技术将目标图片分割得到二值图像,因为三种缺陷各有其独有的特征,据此将二值图像进行分析对比,最后对已经检测出的三种缺陷采取不同的方法标注缺陷... 相似文献
9.
10.
11.
二维直方图准分的Tsallis熵阈值分割及其快速实现 总被引:1,自引:1,他引:1
传统二维Tsallis熵阈值法主要由于对二维直方图采用近似假设等原因,导致分割结果不够准确,由此提出了基于二维直方图准分的Tsallis熵快速图像分割方法.首先,准确选择邻域模板构建二维直方图并将Tsallis熵法用于此直方图上以便提高分割性能;然后,舍弃二维直方图中关于主对角区域的概率和近似为1的假设而准确计算使阈值选取更准确;最后,结合Tsallis熵公式对二维直方图进行分析得到其特性和2个定理,利用此特性和2个定理导出新型、快速的递推算法来降低计算复杂度.实验结果表明,与传统二维Tsallis熵法相比,所提出的方法不仅分割更准确和抗噪性更强,而且占用的存储空间和运行时间都更少. 相似文献
12.
13.
14.
基于萤火虫算法的二维熵多阈值快速图像分割 总被引:3,自引:0,他引:3
提出了基于萤火虫算法的二维熵多阈值快速图像分割方法以改善分割复杂图像和多目标图像时存在计算量大、计算时间长的问题。首先,分析了二维熵阈值分割原理,将二维熵单阈值分割扩展到二维熵多阈值分割。然后,引入萤火虫算法的思想,研究了萤火虫算法的仿生原理和寻优过程;提出了基于萤火虫算法的二维熵多阈值快速图像分割方法。最后,使用该方法对典型图像进行阈值分割实验,并与二维熵穷举分割法、粒子群算法(PSO)二维熵多阈值分割法进行比较。实验结果表明:该方法在单阈值分割、双阈值分割和三阈值分割时分别比二维熵穷举分割法快3.91倍,1040.32倍和8128.85倍;另外,在阈值选取的准确性和计算时间方面均优于PSO二维熵多阈值分割法。结果显示,基于萤火虫算法的二维熵多阈值快速图像分割方法能快速有效地解决复杂图像和多目标图像的分割问题。 相似文献
15.
针对当前多级模糊熵算法在分割人体红外图像时,存在划分数需人工指定,全局划分导致熵的信息度量精度受背景干扰,分割精度不高等问题,提出了非监督层次化模糊相关分割。首先采用熵率法将图像划分为若干超像素,确保区域一致性,提高后续处理效率;随后,用准确度量划分适当性的模糊相关来描述图像,构建模糊相关图割2-划分算子,提高层次化分割中单步分割的精度。2-划分算子的核心思想是利用提出的递推计算策略,快速搜索最大模糊相关时目标和背景的划分概率,并用其来设置图割的数据项,实施超像素的模糊相关图割2-划分。最后将2-划分算子与自顶向下的非监督层次化分割策略相结合,迭代地对目标超像素区域实施2-划分,自适应确定划分数,获得人体目标。实验结果表明:较常用算法,该算法不但能自动确定划分数,而且分割精度还提高了约18%,运行时间约为3.8s,能有效用于人体红外图像分割的工程实践中。 相似文献
16.