首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 107 毫秒
1.
以正硅酸乙酯(TEOS)为前驱体,成功制备了玻璃纤维增强型改性PF(酚醛树脂)基复合材料的基体树脂——环保型纳米SiO2/PF。研究结果表明:当w(TEOS)=10%时,PF/SiO2复合材料的综合性能相对最好,其拉伸强度(758 MPa)、弯曲强度(945 MPa)和冲击强度(261 kJ/m2)分别比未改性体系提高了144%、53%和30%;改性PF体系的最大失重速率温度比纯PF体系提高了40~50℃,其热分解第二阶段的活化能由134.41 kJ/mol升至240.72 kJ/mol;玻璃纤维增强型PF/SiO2复合材料的线烧蚀率和质量烧蚀率分别比纯PF体系降低了22.5%和8.4%。  相似文献   

2.
用热重(TG)法研究了双酚A型聚芳醚酮(PAEK)的热分解动力学,计算了热分解动力学参数.结果表明,双酚A型PAEK的热分解符合无规引发分解模型,热分解过程为一级反应.以Kissinger最大失重率法求得热分解反应的反应活化能E为201.909kJ/mol;以Ozawa等失重百分率法求得反应活化能E为211.398kJ/mol;频率因子A值为2.306×10~(14)~9.173×10~(14)min~(-1);预测N_2中267℃失重5%的热老化寿命为10 a.  相似文献   

3.
用原位法合成了含硼的双酚S甲醛树脂/纳米SiO2(nano-SiO2)杂化树脂,并用于固化双酚A环氧树脂。用差示扫描量热法、动态力学分析、热重研究了玻璃纤维增强复合材料的固化、动态力学性能及热性能,并对其力学性能和电性能进行了测定。结果表明:随着nano-SiO2含量的增加,复合材料的玻璃化转变温度降低,固化峰顶温度降低,但电性能变化不大。w(nano-SiO2)为3%时,复合材料的起始热分解温度最高,达335.1℃,比未加nano-SiO2的复合材料高18.3℃,此时拉伸强度和简支梁缺口冲击强度分别提高39.06MPa,34.51 kJ/m2。  相似文献   

4.
使用动态机械热分析仪(DMA)分析了丙烯酸酯基隔音复合材料的使用温域,采用热重分析法(TG),在空气气氛下分别以5,10,20,30,40℃/min的升温速率对丙烯酸酯基隔音复合材料的热分解进行了分析。实验结果表明丙烯酸酯基隔音复合材料的使用温域为-37.1~80℃,在空气中300℃失重率为1.3%~4.5%;采用Kissinger方程和Flynn-Wall-Ozawa方程对丙烯酸酯基隔音复合材料热分解动力学常数进行了计算,分别得出丙烯酸酯基隔音复合材料的热分解活化能为207.45kJ/mol和207.59kJ/mol。  相似文献   

5.
运用Kissinger和Ozawa法采用非等温DSC对氢化双酚A型环氧树脂/甲基六氢苯酐体系的固化反动力学进行了研究,得到其固化反应活化能分别为41.28 kJ/mol和44.80 kJ/mol,起始固化温度T i,峰顶固化温度T p和终了固化温度T f分别为44.55℃,63.4℃和108.14℃。结果表明:2种方法计算得到活化能大小一致。随着升温速率的提高,T i,T p和T f都有提高。  相似文献   

6.
利用热重分析仪对PES-C/PSM复合材料的耐热性能进行分析,并以Kissinger法研究其热分解动力学,计算热分解表观活化能Ea。结果表明,在空气氛下复合材料的热分解温度随PSM含量的增大而升高,且当PSM的含量提高至1.0%,复合材料的热分解结束温度提高了41.29℃。复合材料的表观热降解活化能随PSM含量的增加而增大,与纯PES-C(Ea_(PES-C)=241 kJ/mol)相比,当PSM含量为1.0%时,PES-C/PSM复合材料的活化能为264.76 kJ/mol,较纯PES-C提高了9.86%。  相似文献   

7.
赵颖   《粘接》2013,(2):36-40
研究了端胺基液体丁腈橡胶(ATBN)改性环氧树脂的固化反应动力学。由于ATBN具有活性端胺基,可与双酚A环氧在室温下固化并形成化学键合,根据Ellerstein法计算固化反应活化能为49.8kJ/mol,根据峰值法计算固化反应活化能为51.1kJ/mol。ATBN与环氧树脂的最佳固化温度为34~78℃。  相似文献   

8.
合成了没食子环氧树脂及2种不同分子结构的经9,10-二氢-9-氧杂-10-磷杂菲-10-氧化物(DOPO)修饰的环氧基笼形倍半硅氧烷(DOPO-POSS),采用浇注工艺制备了新型没食子环氧纳米复合材料,考察了DOPO-POSS分子结构及用量对复合材料力学性能、阻燃性能及热稳定性的影响。结果表明:随着DOPO-POSS含量的增加,复合材料的阻燃性能提高,但力学性能有所下降;当DOPO-POSS末端基均为DOPO且体系磷质量分数为0.5%时,复合材料的冲击强度及极限氧指数较双酚A型环氧树脂分别提高了3.29 kJ/m~2,6.4%,初始降解温度达309℃;DOPO-POSS可以用作没食子环氧树脂的高效增韧剂及阻燃剂。  相似文献   

9.
利用热重分析法比较研究了新型硬质聚氨酯泡沫[超支化聚氨酯多元醇型(HBPU型)]和硬质聚氨酯泡沫(RPUF)在氮气中的热分解行为,探讨了HBPU型RPUF在不同升温速率下的热分解动力学,运用Kissinger最大失重率法和Flynn-Wall-Ozawa等失重百分率法计算获得了其热分解过程的活化能。研究结果表明,HBPU型RPUF的初始分解温度(T5%)为205℃,半寿温度(T50%)为361℃,略低于传统的RPUF。Kissinger法得到的HBPU型RPUF的热分解表观活化能为159.8 kJ/mol;Flynn-Wall-Ozawa法得到的热分解过程分为三个阶段:第一阶段的平均活化能为82.8 kJ/mol,第二阶段的平均活化能为140.7 kJ/mol,第三阶段的平均活化能为111.3 kJ/mol,HBPU型RPUF具有较好的热稳定性。  相似文献   

10.
酚醛型环氧树脂改性氰酸酯共聚物固化反应动力学研究   总被引:2,自引:1,他引:1  
采用差示扫描量热法(DSC)对酚醛型环氧树脂改性双酚A型氰酸酯树脂的固化反应动力学进行了研究,用Kissin-ger方程计算出树脂的表观活化能,其计算值为60.81kg/mol,用Crane定理求得反应级数为0.8846.用外推法求得树脂体系的起始固化温度为120.00℃,峰顶固化温度为176.67℃,终止固化温度为226.67℃.由树脂的DSC和流变分析得到了合理的固化工艺,玻璃纤维织物/改性氰酸酯复合材料具有良好的力学性能.  相似文献   

11.
《粘接》2017,(9)
以双酚A型环氧树脂为基体,3,3'-二乙基-4,4'-二氨基二苯甲烷(DEDDM)为固化剂,热塑性树脂为增韧剂,采用中温固化热熔胶膜法制备环氧树脂预浸料,并以玻璃纤维为增强体制备玻璃纤维/环氧树脂复合材料。结果表明,环氧树脂固化物及其复合材料的力学性能和热性能均随增韧剂的加入呈上升趋势。当增韧剂质量分数为20%时,环氧固化物的弯曲和冲击强度分别为122.4MPa和23.8 kJ/m~2,较纯环氧树脂分别提高50%和154%;玻璃化转变温度(T_g)从102℃提升到123℃;增韧剂/玻璃纤维/环氧树脂复合材料的弯曲强度和层间剪切强度为636.5 MPa和54.9 MPa,T_g为130℃。扫描电子显微镜(SEM)分析表明,玻璃纤维和环氧树脂具有较好的界面粘接性能。  相似文献   

12.
以生物基来源的单体FDCA(2,5-呋喃二甲酸)为初始原料,制备了绿色环保的生物基环氧单体N~2,N~5-双[4-(环氧乙烷-2-基甲氧基)苯基]呋喃-2,5-二甲酰胺。通过~1H-NMR(核磁氢谱)、~(13)C-NMR(核磁碳谱)、FT-IR(傅里叶变换红外光谱)和TOF(飞行时间质谱)对制备的生物基环氧的化学结构进行了表征,利用DSC(差示扫描量热仪)在不同的升温速率条件下对其热固化性能进行了研究,然后用Kissinger和Ozawa法对其固化反应的活化能进行了计算。研究结果表明:通过本试验方法可制备该单体,且纯度很高;与传统的双酚A型环氧树脂(DGEBA)相比,在升温速率相同的条件下,其固化峰值温度比双酚A型环氧树脂要低约40℃,但其固化能为137 kJ/mol,而传统的双酚A型环氧树脂的固化活化能为90 kJ/mol。  相似文献   

13.
用动态DSC研究了笼型γ-氨丙基倍半硅氧烷/环氧树脂纳米杂化复合体系的固化过程、最佳配比与热稳定性能,并用Ozawa和Kissinger—Akahira—Sunose等转化率法研究了固化反应动力学。结果表明,该体系固化峰值温度为85℃,终了温度为118℃,最佳NH2与环氧基摩尔比为0.75,热分解最高起始温度为336-356℃。Ozawa法更适合本体系的动力学分析,固化反应表观活化能为71.0765kJ/mol,反应级数为0.9855级。  相似文献   

14.
纳米SiO2/邻甲酚醛环氧树脂复合材料的性能与固化特性   总被引:3,自引:0,他引:3  
赵敏  高俊刚  李刚 《塑料工业》2004,32(9):11-13,16
制备了纳米SiO2/邻甲酚醛环氧树脂(o-CFER)复合材料,通过力学性能、热性能、扫描电镜以及DSC等方法对该复合材料的性能进行了研究,确定了工艺参数.结果表明,纳米SiO2的加入较大地提高了o-CFER的拉伸强度、冲击强度、热稳定性等性能;通过动态DSC测定确定了纳米SiO2/o-CFER复合材料的固化反应放热量-△H=128J/g,活化能为48.9 kJ/mol,反应级数n=0.871,频率因子A=3.4×103s-1;固化工艺参数为T凝胶=71℃,T固化=133℃,T后处理=165℃.  相似文献   

15.
以柚皮素为原料合成了新型柚皮环氧树脂,以埃洛石纳米管为改性剂、马来酸酐为固化剂采用浇注工艺制备了柚皮环氧树脂/埃洛石复合材料,考察了埃洛石纳米管用量对柚皮环氧树脂/埃洛石复合材料力学性能、动态力学性能、热稳定性的影响。结果表明:纯柚皮环氧树脂的冲击强度及玻璃化转变温度较双酚A型环氧树脂分别提高了3.05 kJ/m2,96℃;埃洛石纳米管能够显著提高柚皮环氧树脂/埃洛石复合材料的冲击强度,当埃洛石纳米管用量为0.8%(w)时,柚皮环氧树脂/埃洛石复合材料的冲击强度为5.50 kJ/m2,较纯柚皮环氧树脂提高了52.8%。  相似文献   

16.
以乙醇溶液中沉淀的方法制备了高环氧值、低氯含量的结晶性双酚S型环氧树脂,利用盐酸-丙酮滴定法、红外、核磁、飞行时间质谱(MALDI-TOF)等手段对树脂的分子结构和环氧值等进行分析表征。以双氰胺为固化剂,采用DSC、TGA、DMA等分析手段对固化行为及固化物性能进行表征。研究结果表明:合成的双酚S环氧树脂纯度高,w(氯离子)<0.01%(相对环氧树脂质量而言),环氧值大于0.50(理论值0.55);加入促进剂w(咪唑)=1%(相对环氧树脂质量而言),体系固化温度降低至151.16℃,固化体系活化能84.80 kJ/mol,反应级数0.92,为近似一级反应;固化物导热系数为0.46 W/(m·K),电阻率为4.063×1011Ω·m,玻璃化转变温度为192.86℃;双酚S环氧/双氰胺/咪唑体系是一种热稳定性高、绝缘导热性能良好的潜在电子封装基体树脂材料。  相似文献   

17.
研究了纳米二氧化硅(SiO2)的含量对双马来酰亚胺(BMI)/环氧树脂(EP)/2,2′二烯丙基双酚A(DBA)/纳米SiO2复合材料的耐热性能、力学性能和吸水性能的影响。结果表明,当纳米SiO2的含量为2.0 %(质量分数,下同)时,BMI/EP/DBA/纳米SiO2复合材料具有较高的强度和良好的韧性,其拉伸强度、弯曲强度和缺口冲击强度比BMI/EP/DBA复合材料分别提高了22.8 %、39.0 %和37.8 %;同时,纳米SiO2含量为 2.0 %时,BMI/EP/DBA/纳米SiO2复合材料具有优异的耐热性,其玻璃化转变温度、初始热分解温度和最大热分解温度分别为204、 410、451 ℃。  相似文献   

18.
环氧树脂含量对氰酸酯热学性能的影响研究   总被引:1,自引:0,他引:1  
采用示差扫描量热法(DSC)和热失重分析法(TGA)研究了环氧树脂含量对氰酸酯树脂固化反应特性、热稳定性以及热膨胀系数的影响。结果表明,环氧树脂的加入可有效降低改性体系的固化反应活化能,同时体系的热稳定性和尺寸稳定性有不同程度的削弱。当环氧树脂质量分数达到20%时,改性体系的表观活化能为65.4 kJ/mol,耐热温度指数为174℃,较纯氰酸酯树脂分别降低了25.8%和21.4%。当环氧树脂质量分数达到50%时,改性体系的热膨胀系数为65.3 922×10-6/℃(25~150℃),较纯氰酸酯树脂提高了8.13%。  相似文献   

19.
纳米HMX基PBX的热分解特性   总被引:1,自引:0,他引:1  
采用溶液-水悬浮法,通过控制水料比、反应温度、搅拌速度等因素制备了纳米HMX基PBX。使用热重(TG)/差示扫描量热(DSC)同步热分析仪研究了其热分解特性。结果表明,纳米HMX基PBX热分解反应的DTG峰温、活化能和放热量分别为557.5K、270.5kJ/mol和816.3J/g;与微米HMX基PBX相比,纳米HMX基PBX的DTG峰温延后3.7K,活化能提高86.9kJ/mol,放热量增加158J/g。在558.3K以下,纳米HMX基PBX的安定性优于微米HMX基PBX。  相似文献   

20.
为了提高双马来酰亚胺树脂(MBMI)的综合性能,扩大其应用范围,以双酚A型环氧树脂(EP)为改性剂,4,4’-二氨基二苯甲烷(DDM)为固化剂,聚醚砜(PES)为增韧剂,硅烷偶联剂KH-550改性后的纳米SiO_2作为无机填料,采用原位聚合法制备了KH-SiO_2/PES/MBMI-EP复合材料,并研究了复合材料的微观形貌、力学性能及耐热性能。红外光谱结果显示:改性后的纳米SiO_2在1555cm~(-1)处出现了N-H弯曲振动吸收峰,证明硅烷偶联剂已接枝到SiO_2表面。SEM结果表明:树脂基体加入PES与纳米SiO_2后,形成了一种多相结构,PES与纳米SiO_2可以协同增韧树脂基体,材料由脆性断裂转变为韧性断裂。力学性能测试表明:随着纳米SiO_2含量的增加,其力学性能呈现先上升后下降的趋势,当纳米SiO_2含量为1.5%时,复合材料的冲击强度及弯曲强度分别达到20.79kJ/m~2和157.23MPa,比树脂基体分别提高了102.2%和53.5%。热失重分析表明:纳米SiO_2的加入有利于提高复合材料的热分解温度,当SiO_2含量为1.5%时,复合材料的热分解温度达到411.3℃,比树脂基体提高了15.8℃。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号