首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 140 毫秒
1.
目的研究内置CFRP圆管的方钢管高强混凝土轴压中长柱的受力全过程,得出内置CFRP圆管的方钢管高强混凝土轴压中长柱的工作机理和静力性能,为更进一步的研究奠定基础.方法在6根内置CFRP圆管的方钢管高强混凝土轴压中长柱试验的基础上,比较分析了6种构件不同的破坏形态、荷载—纵向应变曲线、荷载—横向应变曲线以及各种因素对承载力的影响.结果在加载过程中,对比于同等尺寸的普通方钢管高强混凝土构件,构件的弹性段明显增加,构件的破坏形态均为失稳破坏,达到极限承载力后,构件的承载力有反弹.结论CFRP的存在有效地延缓和抑制了高强混凝土中剪切斜裂缝的产生,使方钢管的约束作用得到充分发挥,内置CFRP圆管轴压中长柱的极限承载能力相比于普通方钢管高强混凝土轴压中长柱有了显著的提高.  相似文献   

2.
目的了解圆截面CFRP-钢管混凝土受弯构件的静力性能,分析荷载-跨中挠度曲线特性以及纵向CFRP层数对该类构件极限承载力的影响.方法对8根圆截面CFRP-钢管混凝土受弯构件以及用于对比的2根圆截面钢管混凝土受弯构件开展静力试验并分析试验结果.结果对于仅缠绕1层环向CFRP的圆CFRP-钢管混凝土受弯试件,其荷载一跨中挠度曲线类似于对应的圆钢管混凝土受弯构件的曲线;对于包裹纵向CFRP的构件,其荷载一跨中挠度曲线可以划分为以下几个阶段:弹性阶段.弹塑性阶段和下降段.结论在本文试件参数范围内,仅环向缠绕1层CFRP对圆钢管混凝土受弯构件的承载力并无显著影响;圆CFRP-钢管混凝土受弯构件的延性性能要好于圆截面FRP筒内填混凝土受弯构件.  相似文献   

3.
为了研究内置碳纤维复合材料(CFRP)圆管的方钢管高强混凝土长柱的力学性能,对4根内置CFRP圆管的方钢管高强混凝土柱和4根方钢管高强混凝土柱进行了承载力对比试验研究,绘制了荷载一变形曲线,并对内置CFRP圆管的方钢管高强混凝土轴压长柱的力学性能进行了全过程分析。结果表明:在含钢率相同的条件下,随着长宽比的增大,相同CFRP层数的方钢管高强混凝土柱承载力有所降低;随着CFRP层数的增加,在长宽比相同的情况下,方钢管高强混凝土柱承载力有显著提高;对核心混凝土的约束效应增加,延缓了构件的屈服时间;CFRP层数对试件的承载力影响更为显著。  相似文献   

4.
内置CFRP圆管的方钢管高强混凝土轴压短柱试验   总被引:2,自引:0,他引:2  
目的研究内置CFRP圆管的方钢管高强混凝土轴压短柱的受力性能.方法对12根内置CFRP圆管的方钢管高强混凝土轴压短柱进行静力加载试验,通过绘制轴压短柱的荷载-应变曲线,对比了不同CFRP配置率的情况下,承载力的提高程度,并对这种新型组合结构进行了经济性能分析.结果内置CFRP圆管的方钢管高强混凝土轴压短柱的受力全过程分为5个阶段;试件承载力随CFRP与钢管配置率增加而增大;在相同承载力情况下,比方套圆中空夹层钢管混凝土柱的经济性能更为优越.另外,由于内置CFRP圆管有效地约束了核心混凝土,改善了方钢管的角部应力集中现象,3种材料能够较好地协同工作.结论这种新型组合结构充分发挥了3种材料的优点,可有效提高柱子承载力,为促进其在工程中的应用提供一定的理论依据.  相似文献   

5.
目的 研究内置CFRP圆管的方钢管高强混凝土的可行性和必要性,并指出内置CFRP圆管的方钢管高强混凝土应用于建筑物的竖向承重构件中所具有的优越性.方法 通过对7根内置CFRP圆管的方钢管高强混凝土柱和5根方钢管高强混凝土柱承载力的对比试验,探讨了在相同宽度厚度比的情况下,3种CFRP层数和5种长细比对内置CFRP圆管的方钢管高强混凝土柱承载力的影响.结果 CFRP圆管对构件的承栽力的有显著提高,内置一层CFRP管承载力增长5%左右,二层增加12%左右;随着长细比的增加,内置CFRP圆管的方钢管高强混凝土构件承载力有减小的趋势.结论 通过对应变曲线的分析得出宽厚比和CFRP参数的最优组合为2层.  相似文献   

6.
目的 研究内置CFRP圆管的方钢管高强混凝土轴压短柱的承载力.方法 进行了12根内置CFRP圆管的方钢管高强混凝土轴压短柱和6根普通方钢管高强混凝土轴压短柱的试验研究和理论分析,探讨了与试件的含钢率及CFRP圆管与方钢管的相对配置率之间的关系以及它们对承载力的影响.结果 承载力随着含钢率及CFRP圆管与方钢管的相对配置率的增大而提高,回归得到了内置CFRP圆管的方钢管高强混凝土轴压短柱的承载力计算初探公式.结论 承载力计算公式的理论计算结果 与试验结果 吻合良好.证明了提出的计算公式的正确性.  相似文献   

7.
目的研究CFRP增强方钢管混凝土压弯构件在往复荷载作用下的力学性能.方法以4个CFRP环向约束方钢管混凝土压弯构件的滞回性能试验为基础,对其跨中荷载-挠度(P-△)曲线、跨中弯矩-曲率(M-φ)曲线、跨中挠度-轴向变形(△-d)曲线、应变以及挠度曲线形状进行分析.结果所有试件的挠度曲线均近似为正弦半波曲线;钢管和CFRP管可以协同工作;同一点的纵向应变和环向应变异号.结论CFRP对方钢管混凝土有很好的环向约束作用,钢管的局部屈曲得到了延缓.所有试件的跨中荷载-挠度滞回曲线均较为饱满,基本没有捏缩现象,表现出很好的滞回性能.所有试件的弯矩-曲率滞回曲线均较为饱满,在加载初期,试件的变形为弹性变形,进入位移控制后,产生不太明显的“包兴格”效应.  相似文献   

8.
目的 研究内置CFRP圆管的方钢管钢管高强混凝土试件受力特点,解决方钢管混凝土构件在实际工程中的缺陷问题.方法 利用PVC管为模管缠制CFRP圆管后,将其内置于方钢管之中并浇筑高强混凝土,待养护期后在500 N压力机上进行偏压试验并对所得试验结果进行计算分析.绘制了荷栽-应变等曲线分析了组合材料的协同工作性能;总结偏压荷载作用下组合材料泊松比的变化规律.结果 偏心率越大,试件承载力越小.平均偏心率增加7.5%,试件承载力下降20%;含钢率越大试件承载力越大,平均钢管增厚1 mm,试件承载力增加13.6%:CFRP平均增加一层,试件承载力提高约10%.此种新型组合试件同普通钢管混凝土试件相同存在大小偏压,其界限偏心率为0.3.结论 CFRP材料强度很高但延性较差.可见该组合试件较好的符合平截面假定.同一偏心率的构件在各级荷载作用下,其中和轴位置基本在同一个微小范围内向加载一侧移动,而且随着偏心率的增大,中和轴位置不断靠近受压一侧.  相似文献   

9.
目的初步了解圆截面CFRP-钢管混凝土受弯构件的静力性能,为进一步的研究奠定基础.方法在8根圆CFRP-钢管混凝土受弯构件静力试验的基础上,分析钢管和CFRP筒的环向和纵向的协同工作,环向应变分布规律,屈服荷载时纵向应变比较。平截面假定,挠度以及纵向CFRP层数对承载力提高率的影响等问题.结果从加载之初直到最大承载力,钢管和CFRP筒的环向应变基本一致,纵向应变也基本一致。表明两种材料在环向和纵向都可以协同工作;纵向受压最大点的环向拉应变最大。纵向受拉最大点的环向压应变最大,其余点的环向应变介于二者之间;对于同一系列的试件。同一荷载下钢管的纵向应变随着纵向CFRP层数的增大而减小,但试件达到屈服荷载时的应变值却十分接近.结论从加载之初直到大约0.7倍的极限承载力。钢管纵向应变沿截面高度的分布符合平截面假定;在同一荷载下,挠度随着纵向CFRP层数的增大而减小,纵向CFRP可以显著提高试件的刚度;对于同一系列的试件。承载力提高率随着纵向CFRP层数的增大而增大.  相似文献   

10.
内置CFRP圆管的方钢管混凝土中长柱偏压试验   总被引:1,自引:0,他引:1  
通过对10根内置碳纤维复合材料(CFRP)圆管的方钢管高强混凝土柱和4根方钢管高强混凝土柱的承载力进行对比试验,分析了CFRP含量、偏心距和长细比等参数对试件性能的影响。结果表明:在长细比相同的条件下,随着偏心距的增大,相同CFRP含量的方钢管高强混凝土柱承载力降低;在长细比和偏心距相同的情况下,随着CFRP含量的增加,方钢管高强混凝土柱承载力有显著提高,对核心混凝土约束效应增加,增强了构件的延性;随着长细比的增大,相同CFRP含量和相同偏心距的方钢管高强混凝土柱承载力降低。试验结果为进一步分析和推导承载力公式打下了基础。  相似文献   

11.
目的研究内置CFRP圆管的方钢管高强混凝土柱-工字型钢梁框架结构的工作特点和抗震性能及不同材料配置量对结构抗震性能的影响.方法使用OpenSees软件,对一个8层内置CFRP圆管的方钢管高强混凝土柱一工字型钢梁的框架结构建立标准模型,进行Pushover分析.结果不同参数对组合柱的承载力、刚度、延性均产生影响,并且由于约束作用的存在改变了夹层混凝土和核心混凝土的本构关系,间接影响了组合柱的抗震性能.将Pushover分析中能力谱法得出的性能点反带入能力谱求出其所对应的目标位移为140mm,满足规范的限值要求.结论设计时应根据需要改变梁柱刚度比的最小值及其性能,达到在合理塑性破坏形式的前提下,使组合柱更多的参与结构抗震,以提高结构的抗震能力.  相似文献   

12.
目的通过研究找出两类内置CFRP圆管方钢管高强混凝土柱-钢梁节点在单调荷载作用下的传力机制和破坏模态.方法设计了一栋采用内置CFRP圆管的方钢管混凝土柱的5层框架结构,利用有限元软件ABAQUS建立了三维有限元模型,对两类节点进行了单调荷载作用下的模拟分析.结果外加强环式节点的梁端弯矩主要通过柱角附近的水平环板和柱两侧外伸环板传递给柱壁和核心混凝土,水平环板有效宽度大约为0.5倍的柱宽度.外肋环板式节点的极限位移均大于外加强环式节点,尤其是外肋宽度大于40mm时更为明显.外肋环板式节点的极限承载力也高于外加强环式节点.结论设计节点的破坏主要原因是环板和钢梁翼缘交接位置出现局部屈曲,节点的极限承载力取决于梁的抗弯承载力,变截面位置作为整个节点危险部位,在设计中应进行计算和校核.  相似文献   

13.
为研究内置FRP约束UHPC高强芯柱的方钢管混凝土柱-钢梁端板-螺栓连接节点的抗震性能,基于“强柱弱梁”目标设计制作5个端板-螺栓连接节点试件,通过拟静力试验研究节点的破坏机理,并分析柱轴压比、FRP管厚度和有无芯柱对节点抗震性能的影响,对比钢梁更换前后节点的性能。试验结果表明:所有试件均在梁端形成塑性铰破坏;该破坏模式下,节点具有较高的承载力、耗能能力和较好的延性;内置芯柱时,试件承载力提高但延性降低;随着FRP管厚度增加,节点初始刚度和耗能能力均得到提升;相比原试件,更换梁试件的耗能能力、延性和初始刚度均有所降低。变形分析结果表明:节点域组合柱以受弯变形为主,两侧钢梁主要承担节点域的剪切变形。依据初始刚度判定该节点属于刚性节点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号