首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为研究砂岩试件冲击载荷作用下的破碎能量耗散特征,利用变截面分离式Hopkinson压杆(SHPB)试验装置,采用3种冲击气压对煤矿砂岩试件实施不同加载速率的冲击压缩试验,分析试验中试件能耗规律。结果表明:砂岩试件吸收能量与入射能量之比相对恒定;试件破碎耗能密度与入射能量呈线性正比关系,而与试件平均应变率呈乘幂关系,显示出较强的应变率相关性;破碎耗能密度越大,试件破碎程度就越剧烈,采用破碎块度平均粒径可以对试件破碎程度进行定量描述,其值随试件破碎耗能密度增大而减小;试件动态强度与破碎耗能密度之间表现出较强的对数关系,试件吸收能量主要耗散于岩石的损伤演化与变形破坏,采用破碎耗能密度能较好反映砂岩试件在外载荷作用下的强度本质特征。  相似文献   

2.
利用分离式霍普金森压杆(split Hopkinson pressure bar,SHPB)对预制裂隙类煤岩组合体进行冲击压缩试验,探究不同裂隙形式组合体的能量演化特征,分析裂隙位置与倾角对组合体破碎分形维数的影响。结果表明:裂隙组合体试件能量耗散与分形特性与裂隙倾角及位置有关。相比完整组合体,裂隙位于煤体或结合面处时,裂隙组合体试件破碎耗能占比与破碎耗能密度偏小,位于岩体中时有所偏大,且各裂隙位置下倾角为30°与60°时对其影响较大,90°时影响较小。裂隙位于岩体中或倾角为90°时,试件分形维数与完整组合体接近,其他裂隙位置或倾角下相差较大。裂隙的存在影响组合体试件的破碎特性,在对复合岩体开挖破碎或支护时,应根据复合岩体的强度与裂隙发育特征,合理布置施工参数,以达到更好的掘进或支护效果。  相似文献   

3.
为研究工程中冲击作用下不同复合岩体的动力响应差异,采用分离式霍普金森压杆(SHPB)试验系统和数字图像相关系统(DIC),对煤–岩和岩–煤2种复合岩体进行不同应变率下的动态冲击试验,对比动力冲击后2种复合岩体的应力波传播特征、动态强度、能量耗散、破碎分形特征以及破坏模式。并建立考虑复合煤–岩特性的本构模型。试验和理论分析结果表明:在相同应变率条件下,2种复合岩体的入射能基本一致,由于应力波传播过程中冲击杆与岩–煤的波阻抗匹配优于煤–岩体,在应变率较小时岩–煤体的动态强度、耗散能明显大于煤–岩体,随着应变率的增加二者差别逐渐减小;复合岩体耗散能越大其破碎块度分形维数越大,表现出明显的线性相关;不同复合岩体在冲击作用下的破坏主要集中在煤体侧,且以劈裂破坏为主,受界面效应的影响,煤体侧裂纹会发育至岩体侧,从而发生贯通破坏。基于元件组合建立考虑应变率效应和损伤演化的本构模型,其结果与试验结果吻合较好,验证了构建模型的正确性。  相似文献   

4.
为掌握冲击作用下磁铁矿石破碎能耗特征,采用分离式Hopkinson压杆(SHPB)试验装置,设计不同冲击气压对磁铁矿石试件进行冲击压缩试验,分析试验中磁铁矿石破碎能耗特征。结果表明,试验中能量形式及分布规律为:透射能吸收能反射能;磁铁矿石吸能效率随着入射能的增加呈先增加后稳定的变化趋势,其最大值为39.5%;除吸收能之外,当入射能小于180 J时,随着入射能的增加,透射能占总入射能的百分比逐渐减小,反射能占总入射能的百分比逐渐增大但增长率较小,能量主要以透射形式耗散,当入射能大于180 J时,随着入射能的增加,透射能和反射能分别占总入射能的百分比基本不变,能量主要以透射和反射的形式耗散;试件破碎形态随入射能的增加分别呈柱状、柱状与针状混合、细小针状、碎屑粉末,当入射能为180 J时,碎块平均粒径为15~18 mm;磁铁矿石试件破碎耗能密度随入射能的增加呈线性增长,破碎耗能密度越大,试件破碎程度越剧烈,碎块平均粒径随破碎耗能密度增大而逐渐减小。  相似文献   

5.
SHPB试验中高温下岩石变形破坏过程的能耗规律分析   总被引:1,自引:0,他引:1  
利用带高温装置的φ100 mm分离式Hopkinson压杆试验系统进行不同高温下大理岩的SHPB试验,分析岩石在冲击破坏过程中的能量耗散特征,探讨冲击加载速率、入射能等对高温下大理岩能耗特征的影响,分析冲击破碎分维及破碎块度与能量耗散的内在联系。研究结果表明:同一高温下大理岩破碎的比能量吸收随着加载速率、入射能的增加均近似线性增加;破碎分维随比能量吸收的增加近似线性增长,而平均破碎块度随比能量吸收的增加逐渐减小,大致呈指数关系。同一高温下岩石的冲击破坏过程中,比能量吸收愈大,岩石的平均破碎块度就愈小,分形维数就愈大,岩石的破碎程度也就愈剧烈。从能量耗散的角度可以较合理地反映岩石变形破坏的全过程。  相似文献   

6.
王大鹏  吴凯 《工业建筑》2023,(4):173-179
为探究冲击荷载作用下养护条件对玄武岩纤维混凝土力学性能的影响,采用分离式霍普金森压杆试验装置(SHPB)对不同养护龄期(1 d、3 d、7 d、14 d、28 d)及养护相对湿度(35%、55%、75%、95%)的玄武岩纤维混凝土开展动态单轴压缩试验,分析养护龄期及养护相对湿度对试件的平均应变率、峰值应力、能量耗散及分形维数的影响规律。结果表明:相同冲击荷载作用下试件平均应变率会随养护龄期的增长、相对湿度的增大而降低,峰值应力随之增大,养护龄期与平均应变率间呈指数负相关,与峰值应力间呈指数正相关;冲击荷载作用下试件能量时程曲线可分为三个阶段,其透射能、耗散能及破碎耗能密度均随养护龄期的增长、相对湿度的增大而增大,反射能随之降低,养护龄期的增长、相对湿度的增大会使试件水化产物增多,增强试件整体性;养护相对湿度为95%时,相较于养护龄期为1 d试件,养护龄期为3 d、7 d、14 d、28 d试件分形维数降幅分别为8.61%、13.91%、23.58%、26.68%,养护龄期减少、相对湿度降低会使试件破碎程度增加,分形维数随之增大。  相似文献   

7.
电磁是煤岩动力灾害预测的重要手段,掌握电磁信号特征与煤体损伤程度间的关系是灾害预测的关键。通过原煤SHPB试验及瞬变电磁监测,分析煤体冲击破裂过程中的电磁信号(0~3 k Hz频段)特征,从破裂耗能及破碎程度两方面分析试件损伤特性,并探求电磁信号特征(幅值、能量)与煤体破裂损伤特性间的关系,研究发现:(1)分形维数与最终破裂程度规律相似,利用分形维数来定量评价煤体破裂程度是可行的;(2)煤岩冲击破裂电磁信号呈瞬时脉冲状,持续时间仅为微秒级,信号幅值及能量总体随着破碎程度的增大而增大;(3)煤岩冲击破裂电磁信号的幅值及能量与其损伤程度(分形维数)符合较好的线性关系,利用电磁信号特征监测煤岩损伤程度是可行的;(4)受煤岩材料固有缺陷的不确定性及共振破坏现象的影响,煤岩的损伤程度与冲击耗散能间的相关性较弱。研究成果对于利用电磁信号特征评价煤体损伤程度进而预测动力灾害的发生具有重要意义。  相似文献   

8.
以改善矿石破碎效率和能耗为目的,采用改进的霍普金森压杆(SHPB)试验装置,开展一维动静组合加载下磁铁矿石力学特性及破碎特征试验研究,分析轴压比与冲击速度对磁铁矿石破碎效果与能量利用率的影响。结果表明:冲击速度主要影响磁铁矿石在动态冲击作用下的抗冲击性能和破碎程度,在轴压比一定时,随着冲击速度的增大,试样破碎块度越小、加载轴压的影响作用越显著、累积应变越大,且轴压比越大累积应变的增幅越大;轴压比主要影响磁铁矿石在动态冲击载荷作用前其内部结构的损伤程度和冲击载荷的能量利用率,随着轴压比的增大试样的动态抗压强度存在一个最大值;一维动静组合加载下磁铁矿石破碎效果和能量利用率受轴压比和冲击速度双重控制,“低轴压+高速度”增强了磁铁矿石的抗冲击性能;“高轴压+低速度”的压剪作用效果不显著、破碎效果差;“高轴压+高速度”使试样破碎成大量岩屑粉末,破碎效果好但能量利用率低。因此,在利用“挤压+冲击”破岩方式破碎磁铁矿石时,应在明确破碎块度要求的前提下,综合考虑轴压比和冲击速度的组合作用,提出轴压比和冲击速度的最佳组合,以提高磁铁矿石破碎效果和能量利用率。  相似文献   

9.
 为研究盐岩的动力特性和破坏特征,利用带围压的分离式Hopkinson压杆(SHPB)试验装置,对盐岩进行不同围压(5,15和25 MPa)下的冲击试验,并基于能量耗散原理来研究盐岩动态力学性能以及破坏特征,分析整个试验过程中的能量传递与转化,探究围压和输入能量对试件吸能及破坏的影响。研究结果表明:在同一围压下,随着入射能的增加,盐岩硬化效应越明显,表现为能量反射率增高而透射能和吸收能降低;在相同或相近的入射能下,随着围压的升高盐岩的流塑性变得越明显,但在动力荷载下盐岩由流塑性向脆性转变,最后发生脆性破坏;随着吸收能的增加,盐岩的峰值应力因围压不同而表现出不同的变化趋势,低围压时,吸收能越大,峰值应力越高,而高围压时,吸收能越大,峰值应力却越小;在有围压状态下,盐岩的冲击破坏形态与其他的脆性岩石相似,但在破坏机制上存在很大差异。  相似文献   

10.
煤岩冲击倾向性是煤岩是否发生冲击地压的自然属性,是煤岩发生冲击地压灾害的关键影响因素。为准确评判煤岩冲击倾向性,以煤岩组合体为研究对象,对其开展单轴循环加卸载试验,获得组合体不同应力水平下弹性应变能,建立弹性应变能与应力水平之间的函数关系,提出一种峰值应力时刻弹性应变能计算新方法。据此,提出一种综合考虑试件峰值强度、弹性应变能、破坏过程能量耗散及破坏时间的剩余能量释放速率指数,并结合现有指标给出冲击倾向性判定区间,最后进行合理性验证。结果表明:(1)随着应力的增大,弹性应变能呈现“缓慢→快速→缓慢”的增长规律,对应了应力–应变曲线的压密阶段、弹性阶段、塑性阶段。(2)输入应变能、弹性应变能、耗散应变能的演化规律与应力演化规律相似,均随应力的增大而增大,输入应变能增幅最大,耗散应变能增幅最小。(3)试验获得了组合体不同应力水平时刻的弹性应变能,建立弹性应变能与应力水平之间的函数关系,即任一时刻应力的平方与弹性应变能具有良好线性关系,据此,提出一种峰值应力时刻弹性应变能计算新方法。(4)综合考虑试件峰值强度、弹性应变能、破坏过程能量耗散及破坏时间等多种因素,提出一种新的冲击倾向性鉴定指标:...  相似文献   

11.
利用MTS 815试验机对煤岩组合体进行单轴和循环加卸载试验,研究了煤岩组合体的能量演化特征及规律。试验结果表明:输入能密度与应力关系可分为3个阶段,即缓慢增长阶段、非线性增长阶段、峰后跌落阶段;单轴压缩下输入能密度和弹性能密度均随着应力的增大而增大,耗散能密度与应力关系比较复杂,其增长率逐渐减小,并趋于0,而后迅速增大,体现出明显的非线性特征;循环加卸载下输入能密度、弹性能密度和耗散能密度随着应力的增大而增大。当试样发生屈服时,耗散能比例增加,弹性能比例降低;研究结论为煤矿动力灾害的能量驱动机制提供一定的理论参考。  相似文献   

12.
煤岩组合体变形破坏前兆信息的试验研究   总被引:1,自引:1,他引:0  
讨论煤、岩体在2种组合模式下受压破坏过程中能量集聚与释放规律.通过试验分析,得出"煤-围岩"系统失稳规律,并结合红外热像、声发射、应变等监测手段,对"砂岩-煤"及"砂岩-煤-泥岩"两类组合体进行单向压缩试验,对比研究不同煤、岩组合体失稳破坏的前兆信息,得到煤、岩组合体失稳破坏过程中红外热像、声发射能谱及组合体不同部位应变的变化规律.研究结果表明,对比煤样单体,煤-岩组合试样失稳更突然,失稳前兆点更难于捕捉.  相似文献   

13.
煤的冲击倾向性是煤矿冲击地压灾害发生与否及致灾程度的重要影响因素,冲击倾向性指煤积聚应变能并产生冲击破坏的性质,因此,峰值强度时刻弹性能量积累是冲击倾向性评价的关键。因煤富含结构缺陷,破坏过程和能量演化更加复杂,针对此种煤样峰值强度时刻弹性能量无法准确求得的难题,对标准煤样进行单轴循环加卸载试验,以获取煤样不同应力状态下弹性应变能积累量,发现弹性应变能积累与应力–应变曲线变化趋势一致,在峰值强度时刻达到最大值。能量输入、弹性能量积累及能量耗散随煤样受载变形呈非线性演化规律,但在任一时刻应力的平方与弹性能量积累表现出良好线性关系。基于此改进峰值强度时刻弹性能量积累量计算方法,更加准确获取试件峰值强度时刻弹性应变能积累量。进一步提出综合考量煤体强度、能量演化及破坏时间的有效弹性能释放速率指数K_(ET)评价煤的冲击倾向性,并结合现有指标给出冲击倾向性分类临界值。最后采用远场碎屑质量占比w及平均粒径d_a表征的煤样破碎程度验证评价结果合理性。研究结果表明:K_(ET)可有效解决现有各项指标评价结果离散性大且相互之间存在冲突的局限性;冲击倾向性K_(ET)评价结果与煤样破坏状态对比,发现K_(ET)与w及破碎程度正相关,与d_a负相关,评价结果更符合实际。  相似文献   

14.
 为揭示石英云母片岩变形及能量特征,针对平行片理和垂直片理方向的试件,基于MTS815岩石力学试验平台开展不同围压下的卸荷试验,分别从体积变形系数、能量比、能量变化率、能量应力增量比等方面系统研究高围压卸荷条件下石英云母片岩变形破坏特征及能量演化规律。结果表明:平行组试件径向变形发育能力及各特征应力量值均高于垂直组;其能量演化规律具有显著的围压效应,2组试件能量特性差异明显;与垂直组相比,平行组试件峰前、峰后应变能变化率较低且高围压下裂隙发育及塑性变形程度更高;提出能量应力增量比以表征试件能量变化对卸荷程度的敏感性,2组试件峰前能量应力增量比均随围压的增加而增加,但峰后弹性能应力增量比几乎不受初始围压的影响,垂直组峰前、峰后弹性能应力增量比和耗散能应力增量比量值均大于平行组。  相似文献   

15.
以珊瑚砾石、珊瑚砂为粗、细骨料,并拌和海水、水泥制备全珊瑚混凝土.利用分离式霍普金森杆(SHPB)系统进行应变率为30.12~143.32s~(-1)的冲击加载试验,获得全珊瑚混凝土试件的动态单轴压缩应力-应变曲线,并研究了其动态强度增长、能量耗散、破坏模式及破碎分形的应变率效应.结果表明:全珊瑚混凝土试件动态强度增长因子(DIF)与应变率的0.5次方呈线性正相关,且高于同等级普通硅酸盐混凝土;全珊瑚混凝土试件总应变能、弹性能和耗散能均与应变率呈线性正相关,耗散能比率随总应变能增加而增大;不同于普通混凝土胶结面的破坏形态,全珊瑚混凝土试件的破裂面往往贯穿于珊瑚骨料;全珊瑚混凝土试件破碎分形维数与其对数应变率呈线性正相关,利用分形维数可定量表征全珊瑚混凝土的破碎程度.  相似文献   

16.
地下岩体结构经常遭受到地震、爆炸、冲击振动等产生的动力扰动,利用3D打印技术的优势研究冲击荷载下岩体动态力学性能对实现3D打印技术在工程领域的应用具有重要意义。采用φ50 mm的变截面霍普金森压杆(SHPB)装置,对含预制裂隙的3D打印岩体试样进行动态单轴压缩试验。研究结果表明:试样的动态抗压强度随着预制裂隙倾角的增大呈现出先减小后增大的趋势,当预制裂隙倾角为30°时试样强度最小,当预制裂隙倾角为90°时试样强度最大。与3D打印岩体试样的静态单轴压缩强度对比发现,3D打印砂性材料具有明显的率效应,当应变率为139.65 s-1时,3D打印岩体试样的动态抗压强度是静态抗压强度的4.34倍。预制裂隙缺陷在一定程度上加剧了试样的能量耗散和破碎过程,并且30°倾角预制裂隙对试样能量耗散和破碎结果的影响程度最大。同时,3D打印岩体试样的能量耗散过程与破碎块度表现出明显的自相关性,所用的3D打印砂性材料的宏观破碎结果与能量耗散之间的关系与天然岩石材料有一定相似性,为今后3D打印材料模拟天然岩体应用于动态力学试验的可行性奠定了基础。  相似文献   

17.
利用改进后的直径50 mm的分离式Hopkinson压杆(SHPB)试验装置,对灰岩试件施加不同加载速率的冲击压缩试验,分析了试验中灰岩试件的能量耗散特征;通过基于Weibull分布的动态统计损伤理论并结合试验曲线分析了灰岩的损伤演化规律,并探讨了最大损伤变量与能量耗散密度的关系。研究结果表明:透射、吸收、反射能量受入射能量的影响显著,并且透射能的相关性最显著;能量耗散密度随应变率的增加而显著增加,呈现较好的线性正比关系,能量耗散密度为零时的临界应变率为62.56 s-1;动态抗压强度与应变率呈指数函数关系;灰岩试件的能量吸收率随应变率的提高而显著减小。基于Weibull分布的动态损伤本构模型的计算曲线与试验曲线较为一致,损伤变量D随应变的增加而逐渐增加,在应力应变曲线峰值处,损伤变量D存在一个明显的拐点,损伤在此处开始急剧增大;灰岩的最大损伤变量Dmax与能量耗散密度呈较强的对数函数关系,存在Dmax为零时的临界能量耗散密度值。  相似文献   

18.
为了研究不同高温加热处理后(25 ℃、100 ℃、200 ℃、400 ℃、600 ℃、800 ℃、1 000 ℃)岩石在冲击压缩荷载作用下的动态破碎情况,利用Φ100 mm大直径分离式霍普金森压杆试验系统,进行了一系列不同高温加热处理后砂岩的冲击压缩实验,采用不同等级的标准筛对冲击荷载作用下,高温后砂岩动态破碎块度的分布情况进行了分析和统计。根据冲击荷载作用下高温加热处理后砂岩的动态破碎块度统计和能量分析的试验结果,研究了冲击加载试验中,不同高温加热处理后砂岩的动态破碎吸能与冲击入射能、岩石动态破碎块度之间的关系,从微观及能量的角度分析了不同高温加热处理后砂岩的动态破碎形态的变化,探寻了岩石破坏的本质,研究成果对岩石工程的设计和防护都有重要的参考意义。  相似文献   

19.
轴压比会对梁柱组合体节点的抗震性能带来影响。本文设计了6个配置高性能钢筋(HRB500E)的足尺低、中、高剪压比梁柱组合体试件,分别在低、中轴压比情况下进行拟静力加载试验,得到各个试件的破坏模式、滞回曲线、骨架曲线、延性系数、耗能系数以及刚度退化率并进行对比。试验结果表明:中低剪压比情况下,低轴压比不利于核心区的保护,降低轴压比使得试件的破坏模式发生改变,高剪压比下的试件破坏模式一致;低轴压比时,试件的延性性能比中轴压比试件有所降低,但是随着剪压比的提升,降低的幅度越来越小;低轴压比下,低剪压比试件SP1由于梁纵筋的粘结滑移较为严重,导致能量耗散抗震性能表现较差,但中高剪压比试件SP2,SP3能量耗散性能好于中轴压比试件SP5,SP6。  相似文献   

20.
为探索动态扰动后西部矿区软岩夹层的能量耗散规律和破坏模式,利用分离式霍普金森压杆装置对弱胶结红砂岩进行动态冲击破坏试验,分析该类红砂岩在受到不同加载速率、不同次数扰动冲击以及是否扰动的条件下,试样在相同加载速率破坏性冲击过程中的能量耗散与分形特征.试验结果表明:在不同速率扰动冲击作用下,随着扰动冲击次数的增加反射能递增...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号