首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The environmental and economical merits of converting solar energy into electricity via photovoltaic cells have caused an ever increasing interest among developed and developing countries to allocate more budget on photovoltaic systems in order to boost up their efficiency in recent years. Besides the material and design parameters, there are several omnipresent factors such as dust, humidity and air velocity that can influence the PV cell's performance. There have been a handful of studies conducted on the effect of various influential parameters on the efficiency and performance of photovoltaic cells; however none has taken all these three parameters into account simultaneously. In this study the impact of dust accumulation, humidity level and the air velocity will be elaborated separately and finally the impact of each on the other will be clarified. It is shown that each of these three factors affect the other two and it is concluded that in order to have a profound insight of solar cell design, the effect of these factors should be taken into consideration in parallel.  相似文献   

2.
The peaking of most oil reserves and impending climate change are critically driving the adoption of solar photovoltaic's (PV) as a sustainable renewable and eco-friendly alternative. Ongoing material research has yet to find a breakthrough in significantly raising the conversion efficiency of commercial PV modules. The installation of PV systems for optimum yield is primarily dictated by its geographic location (latitude and available solar insolation) and installation design (tilt, orientation and altitude) to maximize solar exposure. However, once these parameters have been addressed appropriately, there are other depending factors that arise in determining the system performance (efficiency and output). Dust is the lesser acknowledged factor that significantly influences the performance of the PV installations.This paper provides an appraisal on the current status of research in studying the impact of dust on PV system performance and identifies challenges to further pertinent research. A framework to understand the various factors that govern the settling/assimilation of dust and likely mitigation measures have been discussed in this paper.  相似文献   

3.
An analysis for the solar chimneys has been developed, aimed particularly at a comprehensive analytical and numerical model, which describes the performance of solar chimneys. This model was developed to estimate power output of solar chimneys as well as to examine the effect of various ambient conditions and structural dimensions on the power output. Results from the mathematical model were compared with experimental results and the model was further used to predict the performance characteristics of large-scale commercial solar chimneys. The results show that the height of chimney, the factor of pressure drop at the turbine, the diameter and the optical properties of the collector are important parameters for the design of solar chimneys.  相似文献   

4.
Analysis of short-term solar radiation data   总被引:1,自引:1,他引:0  
Solar radiation data are available for many locations on an hourly basis. Simulation studies of solar energy systems have generally used these hourly values to estimate long-term annual performance, although solar radiation can exhibit wide variations during an hour. Variations in solar radiation during an hour, such as on a minute basis, could result in inaccurate performance estimates for systems that respond quickly and non-linearly to solar radiation. In addition, diffuse fraction regressions and cumulative frequency distribution curves have been developed using hourly data and the accuracy of these regressions when applied to short-term radiation has not been established. The purpose of this research is to investigate the inaccuracies caused by using hourly rather than short-term (i.e., minute and 3 min) radiation data on the estimated performance of solar energy systems. The inaccuracies are determined by examination of the frequency distribution and diffuse fraction relationships for short-term solar radiation data as compared to existing regressions and by comparing calculated radiation on tilted surfaces and utilizability based on hourly and short-term radiation data.  相似文献   

5.
The real utility ranges of the solar selective coatings   总被引:1,自引:0,他引:1  
The efficiency of the solar selective coatings (ηsel) with various combinations of the optical properties (solar absorptance and thermal emittance), and their impact on the performance of solar thermal systems of different concentration ratios (CRs) have been analyzed. The stagnation temperatures of the selective coatings have been measured using stagnation temperature measurement (STM) chamber. From the results of the simulation study, it is recommended that selective solar absorber coatings should be used only in systems with CR=1 (solar flat plate collectors) and its use in systems with high CR values (parabolic collector) is an additional expenditure with reduced efficiency. The dependence of the performance of the system with CR=1 on the low emittance of the absorber coating has also been experimentally confirmed by the stagnation temperatures recorded for different selective coatings measured in an STM chamber, a system with unit CR. For systems with CR=1, a simple and new parameter, specific area ratio (SAR) has been proposed which further pinpoints the exact solar system wherein the selective coatings are to be used.  相似文献   

6.
7.
An optimized solar dish collector (OPSDC) system was proposed in our previous work, which can achieve excellent the optical efficiency and flux uniformity under ideal optics. On this basis, the impacts of the non-ideal optical factors on the optical performance of OPSDC system with a cylindrical and conical receiver are studied in detail and compared with the conventional solar dish collector (COSDC) system in this paper. Where the non-ideal optical factors considered are relatively comprehensive, including the mirror slope error, tracking error, installation error of the mirror and receiver, and receiver's absorptivity degeneration. An optical model with the non-ideal optical factors is built in detail by the ray tracing method, and the corresponding ray tracing codes are developed and verified by literatures and optical software OptisWorks 2012. The results show that the OPSDC system not only has a significantly smaller peak local concentration ratio (LCR) and non-uniformity factor than the COSDC system under the same non-ideal optical factor, but also has excellent optical performance. This means that OPSDC system can effectively avoid the heat absorber generating high-temperature hot spots, thus significantly improving its working reliability and service lifetime. In addition, the tracking error, installation error of the receiver and mirror all lead to the increase of the peak LCR and non-uniform factor, while the mirror slope error and absorber's absorptivity degeneration are conducive to reducing the peak LCR and non-uniform factor. This work can provide a reference for error control of COSDC system and OPSDC system in manufacturing, installation and operation.  相似文献   

8.
《Applied Energy》2007,84(5):477-491
Modelling, performance analysis, and designing of solar energy systems depend on solar radiation data. In this study, a simple model for estimating the daily global radiation is developed. The model is based on a trigonometric function, which has only one independent parameter, namely the day of the year. The model is tested for 68 locations in Turkey using the data measured during at least 10 years. It is seen that predictions from the model agree well with the long-term measured data. The predictions are also compared with the data available in literature for Turkey. It is expected that the model developed for daily global solar radiation will be useful to the designers of energy-related systems as well as to those who need to estimates of yearly variation of global solar-radiation for any specific location in Turkey.  相似文献   

9.
This work investigates experimentally and mathematically the effect of sand dust layer on beam light transmittance at a photovoltaic module glazing surface. A transmittance coefficient for beam light has been found with respect to the number of sand dust particles per unit area of glazing surface, size of the particles, beam light incidence angle and wavelength. It has been shown that the incidence wavelength has a negligible effect on the light transmittance in the visible region due to the fact that the size of the sand dust particles was much greater than the incidence wavelength. A new correlation has been found to help photovoltaic system designers to predict the amount of beam solar radiation that would reach the surface of the modules as a function of sand dust particles size and amount accumulated on the surface when they are used in dusty environments. Furthermore, the results from this work could improve the predictive capability of existing solar energy simulation models by incorporating the factors which account for sand dust accumulation on photovoltaic surfaces.  相似文献   

10.
Multi-junction concentrator solar cells are a promising technology as they can fulfill the increasing energy demand with renewable sources. Focusing sunlight upon the aperture of multi-junction photovoltaic (PV) cells can generate much greater power densities than conventional PV cells. So, concentrated PV multi-junction solar cells offer a promising way towards achieving minimum cost per kilowatt-hour. However, these cells have many aspects that must be fixed to be feasible for large-scale energy generation. In this work, a model is developed to analyze the impact of various atmospheric factors on concentrator PV performance. A single-diode equivalent circuit model is developed to examine multi-junction cells performance in hot weather conditions, considering the impacts of both temperature and concentration ratio. The impacts of spectral variations of irradiance on annual performance of various high-concentrated photovoltaic (HCPV) panels are examined, adapting spectra simulations using the SMARTS model. Also, the diode shunt resistance neglected in the existing models is considered in the present model. The present results are efficiently validated against measurements from published data to within 2% accuracy. Present predictions show that the single-diode model considering the shunt resistance gives accurate and reliable results. Also, aerosol optical depth (AOD) and air mass are most important atmospheric parameters having a significant impact on HCPV cell performance. In addition, the electrical efficiency (η) is noticed to increase with concentration to a certain concentration degree after which it decreases. Finally, based on the model predictions, let us conclude that the present model could be adapted properly to examine HCPV cells' performance over a broad range of operating conditions.  相似文献   

11.
In this work, an uncertainty and sensitivity analysis for the annual performance of a parabolic trough collector plant based on a probabilistic modeling approach of the solar-to-thermal energy conversion process has been accomplished. Realistic probability functions have been assigned to the most relevant solar field performance parameters. The Latin Hypercube sampling method has been used to create equal probable parameter combinations. The so obtained sample matrix has been used to run multiple annual electricity yield simulations in SimulCET, a validated parabolic trough collector plant simulation software, developed by the National Renewable Energy Center (CENER) in Spain García-Barberena et al., 2012. This procedure has led to a representative distribution for the annual plant performance, given the uncertainty in the input data. For this study the parabolic trough power plant model has been run in solar driven operation mode, without the use of thermal storage or fossil fuel back up. While being aware of the great influence of the solar irradiation on the power plant performance, only one single reference meteorological year has been used as solar input data. This has been done in order to emphasize the influence of technical design- as well as solar field maintenance parameters, factors that can be controlled or affected by mankind. In order to assess and rank the impact of each varied model parameter a multiple linear regression has been performed. The standardized regression coefficients, the Pearson correlation coefficients as well as the coefficient of multiple determination R2 are discussed. Varied parameters are the collector mirror reflectance, the collector mirror cleanliness factor, the collector glass tube transmittance, the collector receiver tube absorptance, and the collector receiver tube heat loss characteristic. Based on existing and published bibliography, a set of parameter distributions and ranges have been chosen for this work and the simulation results show that the cleanliness factor has the strongest influence on the model output. The cleanliness is followed (in this sequence) by the mirror reflectance, the glass tube transmittance, the receiver tube absorptance and, finally, by the receiver tube heat loss characteristic.  相似文献   

12.
Electricity generated by solar Photovoltaic (PV) power systems is emerging as one of the most promising cleaner alternatives to replace conventional energy sources, such as coal, oil, and natural gas. This study examines managerial sources of operational efficiency or inefficiency on 855 large commercial rooftop PV power systems in California by examining both scale efficiency and Returns to Scale (RTS). For the research purpose, this study utilizes Data Envelopment Analysis (DEA) as a methodology to assess the scale measures. A difficulty in applying DEA to the performance analysis of PV power systems is that it contains uncontrollable variables such as ambient temperature and solar irradiation, all of which are influenced by weather. It is also widely known that PV power systems cannot produce electricity during night, so being unable to serve as a base load. Thus, these uncontrollable factors often influence the performance of PV power systems. Paying attention to the effects of those uncontrollable factors, this study discusses how to measure scale efficiency and RTS within the framework of DEA. Then, as an application of the proposed approach, this study examines the performance of large commercial rooftop PV power systems in California. This study finds that they belong to increasing (48), constant (807) and decreasing (0) RTS, implying that most of the PV power systems in California have been operating in their appropriate sizes. This further indicates that the operational inefficiency of PV power systems is due to managerial inappropriateness, not their sizes for generation. Thus, there is a space to improve operational efficiency of rooftop PV systems under constant RTS, through managerial efforts such as increase in transmission capacity and operational flexibility to improve solar penetration, and routine maintenance to minimize detrimental effects of dust deposition.  相似文献   

13.
14.
The accumulation of dust particles deteriorates the performance of solar cells and results in appreciable losses in the generated power due to the sun irradiance scattering effects on the surface of the solar panel. This study investigates the impact of dust accumulation on photovoltaic solar modules in Baghdad city in Iraq. For this purpose an experiment has been conducted to quantify losses caused by the accumulation of dust on the surface of three identical photovoltaic solar modules. The modules have been installed with direct exposure to weather conditions, in a well controlled experimental setup. Subsequently, measurements of dust accumulation on modules have been taken on daily, weekly and monthly basis. The dust density and size distribution of aerosol particles and fibers have been also investigated and measured by a highly sensitive aerosols measuring system. The dusted module and another similar clean module have been then exposed to constant radiation and constant temperature using a solar simulator as light source. The deposition of the dust on the surface of the photovoltaic solar modules showed a reduction in both the short circuit current (Isc) and the output power compared to the same parameters of the clean module. The average degradation rate of the efficiencies of the solar modules exposed to dust are; 6.24%, 11.8% and 18.74% calculated for exposure periods of one day, one week and one month. The experimental results are well compared with the calculations obtained by a theoretical model recently developed by the authors.  相似文献   

15.
The performance of solar systems (thermal or photovoltaic) is influenced by the ability of the glazing to transmit solar radiation to the collection surface, besides other factors, such as, incident radiation, tilt of collector, properties of materials, operating strategy, surroundings, etc. This paper discusses the influence of dust on the transmittance of a 0.2-mm-thick low-density polyethylene (LDPE) glazing used commonly in solar air heaters. The reduction in transmittance due to various dust deposition densities of Bangkok clay (size 53–75 μm) has been measured and a correlation relating the dust deposition density and the transmittance given. Experimental observations of natural dust accumulation on an inclined (15°) LDPE glazing at a tropical climatic condition during a 30-day period indicates a dust accumulation of 3.72 g/m2 and is found to reduce the global transmittance of the glazing from about 87.9% to 75.8%.  相似文献   

16.
We describe a computerized microscope system that has been developed for studying the physics of dust particles which adhere to various kinds of surfaces such as those of solar collectors. The device enables investigators: (1) to obtain the particle size distribution of dust on a surface; (2) to calculate the fraction of surface area covered by dust; (3) to calculate the reduction of optical efficiency (of the solar collector under study) as a function of particle size; (4) to investigate the effect of various kinds of applied force field on the adhesion of dust particles to the surface. Some examples are given for the use of such a measuring system for the study of photovoltaic and solar-thermal collector surfaces.  相似文献   

17.
提出了一种评估积灰对光伏组件发电性能影响的有效方法及其数学模型。该方法通过监测光伏发电效率和光伏组件连续积灰的灰尘密度值,建立了输出功率退化数学模型,从理论上说明光伏组件表面积灰对发电效率的影响,为定量研究灰尘影响发电效率提供了理论支撑。搭建了试验平台进行试验研究,验证了输出功率退化数学模型的精度。  相似文献   

18.
F. Palacín  C. Monné 《Energy》2011,36(7):4109-4118
This paper focuses on the validation of a dynamic simulation model used to describe the performance of an existing solar cooling installation located in Zaragoza (Spain). The dynamic model has been developed under the simulation environment TRNSYS. The aim of this simulation model is to dispose of a tool in order to use it to evaluate different energy improvement actions in a real solar cooling installation. This solar cooling installation has been monitored and analyzed since 2007. The COP of this experimental solar cooling system presents a great influence from its heat rejection sink, a dry cooling tower. Once the model was validated with the experimental data obtained from the real installation, it was used to predict the chiller performance with a new geothermal sink, which started to operate in 2009. The present work describes the design and validation model process, as well as the comparison between the model results and the monitoring ones with the geothermal heat rejection system.  相似文献   

19.
Technology for the manufacture of coated glazings with spectrally selective optical properties, such as low-e and solar-control glazings, has been developed in the last few decades. This is leading researchers to develop new optical and thermal models in order to ascertain glazing performance. These new models must accurately reproduce the optical properties for any incident solar angle by using the available experimental data, which often means only information for normal incident radiation. In this paper, a new model is presented that characterizes the angular dependence of coated glazings. To provide a simple, intuitive understanding, this model uses only one thin film to characterize optical performance. In addition an optimization algorithm has been developed to obtain the spectral optical properties of that equivalent film using spectral experimental data under normal incidence. Finally, the model is validated with experimental data and the results are compared with other known models.  相似文献   

20.
This paper presents a clear-sky model, which has been developed in the framework of the new digital European Solar Radiation Atlas (ESRA). This ESRA model is described and analysed with the main objective of being used to estimate solar radiation at ground level from satellite images with the Heliosat method. Therefore it is compared to clear-sky models that have already been used in the Heliosat method. The diffuse clear-sky irradiation estimated by this ESRA model and by other models has been also checked against ground measurements, for different ranges of the Linke turbidity factor and solar elevation. The results show that the ESRA model is the best one with respect to robustness and accuracy. The r.m.s. error in the estimation of the hourly diffuse irradiation ranges from 11 Wh m−2 to 35 Wh m−2 for diffuse irradiation up to 250 Wh m−2. The good results obtained with such a model are due to the fact that it takes into account the Linke turbidity factor and the elevation of the site, two factors that influence the incoming solar radiation. In return, it implies the knowledge of these factors at each pixel of the satellite image for the application of the Heliosat method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号