首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structural and thermoelectric properties of Na- and Ag-substituted CoO dense ceramics have been investigated. X-ray diffraction shows that pure phase and Ag/CoO composites have been obtained for Na-doped and Ag-doped CoO, respectively. Raman spectroscopy shows an effect of Na dopants on the lattice disorder of CoO. The chemical composition, element distribution, and valence states of the samples have been characterized by Auger electron microscopy and X-ray photoelectron spectroscopy. Substitution of Co by 5 at. % Na enhances the power factor to 250 μW m−1 K-2 at 1000 K, similar to that of Ca3Co4O9. The corresponding thermal conductivity is also reduced to 3.55 W.m−1 K−1 at 1000 K. Consequently, Co0.95Na0.05O exhibits the best thermoelectric figure of merit (ZT), which is 0.07 at 1000 K. On the other hand, the substitution of Ag into CoO leads to the formation of CoO/Ag composites and deteriorates ZT values.  相似文献   

2.
《Ceramics International》2017,43(14):11142-11148
Recently, many novel superionic thermoelectric materials have been discovered along the concept of “phonon-liquid electron-crystal” (PLEC). Among them, Cu2-xSe-based liquid-like materials are typical examples. In this study, a series of copper-deficient Cu2-xSe (0.05 ≤ x ≤ 0.25) materials were synthesized and used to study the role of Cu vacancies on the electrical and thermal transport properties. The X-ray photoelectron spectroscopy (XPS) measurements suggest that the valence states of Cu and Se are independent on the Cu/Se atomic ratio. With increasing the content of Cu vacancies, the hole concentration is monotonously increased, leading to the improved electrical conductivity and reduced Seebeck coefficient. Based on the single parabolic band model analysis, it is found that changing the content of Cu vacancies does not obviously modify the material's electronic band structure and effective mass. Due to the presence of highly mobile Cu ions inside the crystal structure, the lattice thermal conductivities of all Cu2-xSe (0.05 ≤ x ≤ 0.25) materials are very low with values around 0.39 W m−1 K−1 at 500 K. Because of the significantly reduced Seebeck coefficient and increased electronic thermal conductivity, the thermoelectric figure of merit zTs are decreased when increasing x from 0.05 to 0.25. At 750 K, a maximum zT of 0.46 is obtained in Cu1.95Se among all Cu2-xSe (0.05 ≤ x ≤ 0.25) materials.  相似文献   

3.
采用固相工艺制备了具有锂位掺杂的磷酸铁锂正极材料Li1-xTixFePO4(0≤x≤0.02),并将该材料与相同条件下制备的LiFePO4/C材料进行晶体结构、表面形貌、容量性能以及倍率性能比较.通过比较发现,Li1-xTixFePO4和LiFePOJC均具有橄榄石结构,且粒径大小均在2~4 μn.电化学性能测试结果表明,Li1-xTixFePO4比LiFePO4/C具有更加优异的容量性能和倍率性能.  相似文献   

4.
《Ceramics International》2021,47(21):29888-29899
CoxNi3-xP2O8 (0 ≤ x ≤ 3) solid solutions were synthesized via the chemical co-precipitation method. Variation of unit cell parameters and interatomic distances indicated that these solid solutions with the Ni3P2O8 structure are stable between 800 and 1200 °C in compositions with 0 ≤ x ≤ 1.5 and between 800 and 1000 °C when (0 ≤ x ≤ 3). When (2.5 ≤ x ≤ 3.0), the solid solutions lead to the Co3P2O8 structure, being stable between 800 and 1000 °C.The yellow colour of the Ni3P2O8 compound changes to pink or red when Co(II) ions are incorporated in the structure as Ni3P2O8 solid solutions are formed. Bands corresponding to second and third electronic transitions of the Co(II) ions in octahedral coordination appear in the 450–600 nm in the UV-V spectra, and they are responsible of the observed changes in the colour. Absorbance in the visible spectra was also obtained from enamelled samples but a new band at 650 nm with considerable absorbance when x > 1.0 increased the blue amount, and colour of the enamelled samples was yellowish brown, brown, green and blue.  相似文献   

5.
Ni x Co1-x MoO4 (0 ≤ x ≤ 1) nanowire electrodes for lithium-ion rechargeable batteries have been synthesized via a hydrothermal method, followed by thermal post-annealing at 500°C for 2 h. The chemical composition of the nanowires was varied, and their morphological features and crystalline structures were characterized using field-emission scanning electron microscopy and X-ray powder diffraction. The reversible capacity of NiMoO4 and Ni0.75Co0.25MoO4 nanowire electrodes was larger (≈520 mA h/g after 20 cycles at a rate of 196 mA/g) than that of the other nanowires. This enhanced electrochemical performance of Ni x Co1-x MoO4 nanowires with high Ni content was ascribed to their larger surface area and efficient electron transport path facilitated by their one-dimensional nanostructure.  相似文献   

6.
采用基于密度泛函的第一性原理,从电子层次计算研究了锂离子电池正极材料Li_xCoO_2(0≤x≤1)的晶体结构、电子结构和力学性质。结果表明:Li_xCoO_2在脱锂过程中晶体结构会发生转变,当x=0.5时由六方结构R ■ m晶型转变为单斜结构P2/m晶型,当完全脱锂(x=0)时又转变为六方结构P ■ m1晶型。随着Li原子的脱出,Li_xCoO_2导带被部分填充,价带被完全填充,金属性质和电子导电性增强,并出现自旋极化。Li_xCoO_2中Co—O键为含有部分离子性特征的共价键,随着Li原子的脱出,Co—O键的离子性特征减弱,共价性特征增强。随着Li原子的脱出,Li_xCoO_2的体积模量(B)、剪切模量(G)和弹性模量(E)均呈现逐渐减小的趋势,而Poisson比和各向异性指数逐渐增大。G/B值变化趋势表明,LiCoO_2呈脆性,脱锂过程中向韧性转变。  相似文献   

7.
应用密度泛函理论方法计算了各种可能的(ZrO2)n(1≤n≤5)团簇结构,同时模拟了对应团簇结构的红外光谱.氧化锆团簇中,锆氧原子间最大程度的交互连接是最稳定的结构.团簇的红外光谱表明:600~700 cm-1附近的峰对应着氧化锆团簇的Zr-O-Zr-O四元环振动,800 cm-1附近的峰对应着氧化锆团簇的Zr-O-Zr-O-Zr-O六元环振动,大于900 cm-1的峰对应着氧化锆团簇的自由氧原子的Zr-O振动.实验分析与理论计算结果表明:500 cm-1附近较强的特征振动峰对应着四方氧化锆的特征振动.  相似文献   

8.
掺杂少量Sm时La0.67-xSmxSr0.33MnO3(0.00≤x≤0.30)的磁电性质   总被引:4,自引:0,他引:4  
郭焕银  刘宁  徐素军  童伟  张裕恒 《硅酸盐学报》2004,32(12):1481-1485
通过测量样品的磁化强度-温度(M-T)曲线、电阻率-温度(ρ-T)曲线及磁电阻(magnetoresistance)-温度(MR-T)曲线,研究了Sm掺杂(x=0.00,0.10,0.20,0.30)对La0.67-xSrmxSr0.33MnO3磁电性质的影响.发现在铁磁相主要是单磁子散射起作用,表现为金属型导电,可用公式ρ=ρ0+AT2拟合,其中ρ为温度T时的电阻率;ρ0为0 K时的电阻率;A为常数.顺磁相的输运机制主要是小极化子跃迁起作用,可以用公式ρ=BTexp·(Ea/kBT)拟合,其中Ea为激活能;kB为Bolzman常数;B为常数.在相变温区是顺磁相的小极化子与铁磁相的单磁子2种输运性质共存.  相似文献   

9.
采用固相工艺制备了具有锂位掺杂的磷酸铁锂正极材料Li1-xTixFePO4(0≤x≤0.02),并将该材料与相同条件下制备的LiFePO4/C材料进行晶体结构、表面形貌、容量性能以及倍率性能比较。通过比较发现,Li1-xTixFePO4和LiFePO4/C均具有橄榄石结构,且粒径大小均在2~4μm。电化学性能测试结果表明,Li1-xTixFePO4比LiFePO4/C具有更加优异的容量性能和倍率性能。  相似文献   

10.
《Ceramics International》2019,45(15):18347-18355
Cobalt ferrites (CoxFe3-xO4, 0 ≤ x ≤ 1) may possess large magnetocrystalline anisotropy and coercivity at certain cobalt/iron (Co/Fe) ratios, while further explorations on their microwave absorption mechanisms are not adequate so far. In this study, a series of CoxFe3–xO4 nanocrystals were synthesized by a developed oxidation-precipitation method, and a combination of dielectric relaxation and magnetic resonance was revealed in electromagnetic studies. Dielectric relaxation peaks were originated from orientation polarization and affected by oxygen vacancy densities. Magnetic resonance peaks were shifted to higher frequency due to the increased magnetocrystalline anisotropy at higher Co/Fe ratios. The excellent microwave absorption performance of as-prepared CoxFe3–xO4 were also obtained, which should be attributed to the electromagnetic matching of dielectric relaxation and magnetic resonance at higher frequency ranges.  相似文献   

11.
The effects of strontium doping on the structural properties and magnetic ordering of Nd1?xSrxFeO3 orthoferrite system have been studied by employing macroscopic and microscopic structural techniques like X-ray diffraction, scanning electron microscopy and 57Fe Mössbauer spectroscopy. X-ray diffraction confirmed that single phase materials have been synthesized. It has been observed that orthorhombic distortion, density and porosity have decreased; whereas, grain size, tolerance factor and symmetry have increased with increase in the strontium concentration. Mössbauer results showed an increase in the Fe4+/Fe3+ ratio, sagging and local octahedral distortions while decrease in the magnetic ordering with increase in the strontium content. The origin behind anomalous octahedral distortions in this system has been attributed to the decrease in the oxidation state and mismatch in the ionic radii of A-site cations and increase in the concentration of Fe4+, due to Sr2+ doping at Nd3+ sites. The collapse of magnetic ordering has been ascribed to the weakening of super-exchange interactions, dilution of strong long range magnetic sub-lattice of high spin Fe3+ (five unpaired electrons) by relatively lower spin of high spin Fe4+ (four unpaired electrons) and increase in the spin–spin relaxation frequency.  相似文献   

12.
本报告以低温燃烧法合成NixZn1-xFe2O4铁氧体粉末,整个燃烧合成在低温下进行.所得铁氧体粉末以X光粉末绕射法进行结构分析,并以穿透式电子显微镜进行粉末颗粒大小与形状之鉴定,再以振动样品测磁仪进行磁性质之量测.实验结果显示以低温燃烧合成法所制备之NixZn1-xFe2O4铁氧体粉末为立方晶结构,但在x=0.3~0.4之间时有γ-Fe2O3相出现,而在x=0.7~0.8之间有Ni结晶出现.磁性质方面,在x=0.4时饱和磁化量最高达81.2 emu/g,矫顽磁力达117.02 Oe.而在x=0.7时可得最大矫顽磁力142.5 Oe,此时饱和磁化量约为56 emu/g.以穿透式电子显微镜分析铁氧体颗粒大小约在10~30 nm之间,显示此方法可快速并且在低温下合成NixZn1-xFe2O4铁氧体粉末.  相似文献   

13.
14.
《Ceramics International》2016,42(11):12995-13003
A simple sol-gel auto combustion process was used to synthesize La3+ substituted M-type strontium hexaferrite, Sr1-xLaxFe12-xO19 (0.0≤x≤ 0.5). Structural, magnetic, and optical behavior as a function of La3+ substitutions were investigated by Fourier transformed infrared spectroscopy (FT-IR). X-ray powder diffraction (XRD). Scanning electron microscopy (SEM), Mössbauer spectroscopy, vibrating sample magnetometer (VSM), and Diffuse reflectance spectroscopy (DRS). XRD data showed single phase magnetoplumbite structure and Rietveld analysis confirmed P63/mmc space group for all the series. The average crystallite size was found to be in the range of 43.2–48.4 nm. The variation in line width, isomer shift, quadrupole splitting, relative area and hyperfine magnetic field values have been determined from 57Fe Mössbauer spectroscopy data. The fittings accounted for the Fe2+/Fe3+ charge compensation mechanism at the 2a site due to replacement of Sr2+ by La3+. The saturation magnetization (σs) decreases from 57,21 to 63,23 emu/g and remnant magnetization (σr) decreases from 35.6 emu/g to 28.7 emu/g with increasing La substitution. The decrement is sharper at coercive field (Hc) from maximum value of 5325 to minimum 1825 Oe. Demagnetizing factor (N) is 3 times more for the x=0.3, 0.4, and 0.5. However all samples exhibit ferromagnetic behavior at room temperature. Magnetic anisotropy of Hexaferrites was detected as uniaxial and effective anisotropy constants (Keff) were between 5.93×105 and 4.76×105 Ergs/g. The high magnitudes of anisotropy fields (Ha) in the range of 13863–15574 Oe reveal that all hexaferrites are magnetic hard materials. Tauc plots were applied to extrapolate the direct optical energy band gap (Eg) of hexaferrites. The Eg values decreased from 1.83 to 1.34 eV with increasing La content.  相似文献   

15.
16.
《Ceramics International》2017,43(4):3688-3692
Li2O-3MgO-mTiO2 (1≤m≤6) ceramics were prepared by the solid state reaction method. X-ray diffraction, energy dispersive spectrometer and scanning electron microscopy techniques were used to investigate the phase composition and crystal structure. With increasing m values, the phase structures of ceramics changed as: (Li2Mg3TiO6, m=1)→(Li2Mg3Ti4O12 and Mg2TiO4, m=2,3)→(Li2Mg3Ti4O12, m=4)→(Li2Mg3Ti4O12, MgTiO3 and Li2MgTi3O8, m=5)→(Li2Mg3Ti4O12, MgTiO3, Li2MgTi3O8 and MgTi2O5, m=6). The optimized sintering temperature was lowered from 1275 °C to 1050 °C. When m=5, Li2O-3MgO-5TiO2 ceramics showed good microwave dielectric properties at a wide sintering temperature range of 1000–1200 °C, and the best microwave dielectric properties of Q×f=71,726 GHz, εr=21.9 and τf=−20.9 ppm/°C were obtained at a relatively low sintering temperature of 1050 °C.  相似文献   

17.
《Ceramics International》2015,41(7):8623-8629
Samarium doped Mn–Zn ferrite nanoparticles of composition Mn0.5Zn0.5SmxFe2−xO4 (0≤x≤0.5) have been synthesized by a chemical co-precipitation method for developing low Curie temperature stable ferrofluid. These samples were characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Energy Dispersive Spectroscopy (EDS), Electron Paramagnetic Resonance (EPR) spectroscopy and search coil method analytical techniques for their structural, morphological and magnetic properties. X-ray diffraction patterns confirmed the formation of crystalline single spinel phase of as grown nanoparticles. Lattice parameter and lattice strain increases with the increase in Sm3+ content. SEM images revealed the presence of ultrafine particles and their agglomerated structures in higher Sm3+ ions concentration analogues. The stoichiometry of the final product agreed well with the initial substitution composition as evidenced by EDS data. Electron paramagnetic resonance (EPR) spectra proved the ferromagnetic nature of nanoparticles. The magnetic measurements by search coil method showed superparamagnetism for x=0, 0.1 the samples with saturation magnetization of 23.95 emu/g for Mn0.5Zn0.5Fe2O4 sample which increases with rise in Sm3+ ions content. The results are explained and correlated with the structural, morphological and magnetic properties for developing stable kerosene based ferrofluid by using these nanoparticles.  相似文献   

18.
《Ceramics International》2015,41(6):7394-7401
The Co1−xMnxFe2O4 (0≤x≤0.5) spinel ferrite thin films were deposited on quartz substrates by chemical spray pyrolysis technique. The effect of Mn substitution on to the structural, electrical, dielectric and NO2 gas sensing properties of cobalt ferrite thin films was studied. The X-ray diffraction analysis reveals that deposited films exhibit spinel cubic crystal structure. The lattice constant increases with the increase in Mn2+ content. The decrease in resistivity with increase in temperature suggests that the films have a semiconducting nature. The room temperature dielectric properties such as dielectric constant (ε′), loss tangent (tanδ), dielectric loss (ε′′) and AC conductivity have been studied in the frequency range 20 Hz–1 MHz. The film shows the highest sensor response at moderately low (150 °C) operating temperature. The effect of operating temperature, gas concentration, film selectivity and substitution of Mn on to gas response is carefully studied. The manganese substituted cobalt ferrite films are extremely selective towards NO2 with a 20 times gas response compared with other gases. The gas response achieved nearly 92% of its initial value after 150 days, indicating good stability of the films.  相似文献   

19.
New multi-component glasses of Se78 ? x Te20Sn2Pb x (0 ≤ x ≤ 6) system have been synthesized using melt-quench technique. Differential Scanning Calorimetric measurements are performed at different heating rates under non-isothermal conditions to study the glass transition kinetics of prepared chalcogenide glass. Different kinetic parameters such as the activation energy of glass transition, thermal stability, glass forming ability etc have been determined. The composition dependence of kinetic parameters of glass transition is also discussed.  相似文献   

20.
《Ceramics International》2016,42(11):13098-13103
We report the effect of carrier doping via partial substitution of La3+ for Sr2+ on the structural, magnetic and magnetocaloric properties of Sr2FeMoO6 double perovskite. Polycrystalline Sr2−xLaxFeMoO6 (x=0.0, 0.1, 0.2, 0.3) samples were prepared using the conventional solid state reaction method. Using the X-ray diffraction (XRD) analysis it was established that all the samples crystallized in a tetragonal structure with I4/mmm space group. An increase in the La doping lead to an increase in the lattice parameter ‘a’ and the volume of the unit cell. The lattice parameter ‘c’ however remained unchanged. The temperature variation in magnetization and Arrott analysis suggested a second order of ferromagnetic phase transition in all samples with Curie temperature, TC increasing from 358 K for x=0.0–365 K for x=0.3. A gradual increase in magnetization was also observed with the increasing La content up to x=0.2. The magnetic entropy change was calculated from the measurement of isothermal magnetization versus magnetic field at different temperatures. The tunability of magnetization and TC simply by adjusting the concentration of La and synthesis conditions makes Sr2FeMoO6 an attractive material for magnetic refrigeration at desired temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号