首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
通过Ni、W、P与CeO2、SiO2纳米颗粒的脉冲共沉积,在普通碳钢表面制备了Ni–W–P–CeO2–SiO2纳米复合镀层。在一定的脉冲频率和平均电流密度下,研究了正向脉冲占空比对纳米复合镀层的化学组成、沉积速率、显微硬度和显微组织的影响。结果表明:增大正向脉冲占空比时,纳米复合镀层的晶粒尺寸增大,沉积速率和显微硬度降低。当正向脉冲占空比控制在10%时,沉积速率最快(为48.6μm/h),显微硬度最高(为696HV)。纳米复合镀层中的P含量随着正向脉冲占空比的增大而增加,但CeO2、SiO2纳米颗粒及W的含量不断降低,正向脉冲占空比对W的沉积量影响最明显。  相似文献   

2.
采用高频脉冲电沉积法在不锈钢板上制备Ni–Co/SiC复合镀层。研究了镀液中SiC含量、脉冲频率、占空比以及平均电流密度对复合镀层中Si含量的影响,得到的较佳工艺参数为:纳米SiC 8 g/L,脉冲频率60 kHz,平均电流密度3~4 A/dm2,占空比0.32,温度40°C,pH 4.0~5.0,时间60 min。对比研究了较佳工艺下制备的Ni–Co/SiC和Ni–Co镀层的表面形貌和相结构。结果表明,Ni–Co/SiC复合镀层的表面比Ni–Co合金镀层更细致均匀,SiC具有细化镀层晶粒的作用。  相似文献   

3.
在45钢上脉冲电沉积Ni–W–HNTs复合镀层,基础镀液组成和工艺条件为:NiSO_4·6H_2O 15.8 g/L,Na_2WO_4·2H_2O 46.2 g/L,NaBr 15.5 g/L,柠檬酸三钠147.0 g/L,NH4Cl 26.7 g/L,十二烷基硫酸钠(SDS)0.1 g/L,pH=8.5,温度(70±5)°C,时间60 min。研究了镀液HNTs用量、平均电流密度、脉冲频率和占空比对复合镀层HNTs含量和厚度的影响,得到HNTs的最佳用量为10 g/L,最优脉冲参数为:平均电流密度7 A/dm2,脉冲频率800 Hz,占空比70%。该条件下所得Ni–W–HNTs复合镀层结构均匀、致密,表面平整,厚度为34μm,HNTs质量分数为8.72%,在3.5%NaCl溶液中的耐蚀性优于Ni–W合金镀层。  相似文献   

4.
通过Ni,W、P与CeO2、SiO2纳米颗粒的脉冲共沉积,在普通碳钢表面制备了Ni-W-P-CeO2-SiO2纳米复合镀层.在一定的脉冲频率和平均电流密度下,研究了正向脉冲占空比对纳米复合镀层的化学组成、沉积速率、显微硬度和显微组织的影响.结果表明:增大正向脉冲占空比时,纳米复合镀层的晶粒尺寸增大,沉积速率和显微硬度降低.当正向脉冲占空比控制在10%时,沉积速率最快(为48.6 μm/h),显微硬度最高(为696 HV).纳米复合镀层中的P含量随着正向脉冲占空比的增大而增加,但CeO2、SiO2纳米颗粒及W的含量不断降低,正向脉冲占空比对W的沉积量影响最明显.  相似文献   

5.
田柱  李风  舒畅 《电镀与涂饰》2013,(12):17-20
以烧结NdFeB永磁体为基体,采用复合电沉积法制备了Ni–CeO2复合镀层。镀液组成与工艺条件为:NiSO4250 g/L,NiCl240 g/L,H3BO335 g/L,纳米CeO210 g/L,十二烷基硫酸钠0.05 g/L,温度45°C,电流密度3 A/dm2,时间30 min。对比研究了纯镍镀层和Ni–CeO2复合镀层的表面形貌、结构组成、耐蚀性、结合力、显微硬度等性能。结果表明,与纯镍镀层相比,Ni–CeO2复合镀层结晶更为细致,在3.5%NaCl溶液中的耐蚀性提高,显微硬度由纯镍镀层的358.7 HV提高至428.3 HV,结合力明显增强。  相似文献   

6.
采用脉冲电镀法在Q235钢上制备了Ni–纳米Al_2O_3复合镀层。通过正交试验得到最佳工艺条件为:六水合硫酸镍234 g/L,六水合氯化镍30 g/L,硼酸35 g/L,十二烷基硫酸钠0.6 g/L,糖精1 g/L,纳米Al_2O_3 10 g/L,p H 3.5,电流密度2 A/dm~2,占空比60%,频率1 000 Hz,温度40°C,搅拌速率200 r/min,时间60 min。在最佳工艺条件下所得Ni–纳米Al_2O_3复合镀层表面平整、致密,晶粒细小,弥散分布着纳米Al_2O_3,显微硬度、耐磨性和耐蚀性都比Ni镀层好。  相似文献   

7.
采用脉冲电沉积法在PCr Ni3Mo VA钢上制备钨–钴合金镀层,基础镀液配方和工艺条件为:CoSO_4·7H_2O 56.2 g/L,Na_2WO_466 g/L,H_3BO_3 40 g/L,柠檬酸钠64.5 g/L,柠檬酸7.68 g/L,p H=6.7±0.1,温度58°C,平均电流密度0.5 A/dm~2,脉冲频率6.7~333.0 Hz,占空比3.3%~66.7%,时间50 min。探究了脉冲频率和占空比对钨–钴合金镀层形貌、成分、物相、显微硬度等的影响。当脉冲频率为33.30 Hz,占空比为33.3%时,电镀所得钨–钴合金镀层平整、致密,晶粒细小,含钨17.09%(原子分数),显微硬度为719.1 HV。  相似文献   

8.
以1Cr18Ni9Ti不锈钢板为基体,采用脉冲电镀技术制备了Cu–CeO_2复合电极材料。研究了镀液中纳米CeO_2添加量、阴极平均电流密度、占空比及脉冲频率对Cu–CeO_2复合镀层的CeO_2含量和显微硬度的影响,得到最优镀液组成和工艺条件为:CuSO_4·5H_2O2_40g/L,浓硫酸20g/L,H3BO340g/L,NaCl0.2g/L,十二烷基硫酸钠0.05g/L,CeO_230g/L,温度30°C,阴极平均电流密度10A/dm2,占空比0.3,脉冲频率2000Hz,双向磁力搅拌。在最佳工艺条件下电镀3h所得复合镀层厚度为216μm,CeO_2质量分数为4.32%,显微硬度为371HV。采用该复合镀试样为工具,对1Cr18Ni9Ti不锈钢进行电火花加工(EDM)试验后,其损耗率为2.35%,远远低于纯铜电极作工具时的损耗率(16.80%),表明Cu–CeO_2复合电极的抗电蚀性能优于纯铜电极。  相似文献   

9.
采用电沉积法在铁片上制备Ni–W–微米SiC复合镀层。研究了微米SiC颗粒用量、pH、电流密度等工艺参数对复合镀层中SiC颗粒含量的影响,得到最优工艺为:NiSO_4·6H_2O 20 g/L,Na_2WO_4·2H_2O 50 g/L,Na_3C_6H_8O_7·2H_2O 50 g/L,微米SiC颗粒20g/L,pH7.0,电流密度2.5 A/dm~2。采用X射线衍射仪、扫描电子显微镜、能谱仪和浸泡腐蚀试验表征了Ni–W–微米SiC复合镀层的晶相结构、表面形貌、元素组成和耐蚀性。采用红外光谱法初步探讨了SiC微米颗粒的沉积机理。结果表明,SiC微米颗粒在复合镀层中的质量分数可高达42.5%,SiC微米颗粒的存在能消除Ni–W合金镀层的裂纹,从而提高镀层对基体的保护能力。镀液中的阴离子可能对SiC微米颗粒的沉积过程有一定的影响。  相似文献   

10.
采用脉冲电源,在铜表面制备了复合镀层,研究了占空比、镀液中ZrO2纳米微粒添加量和脉冲频率对复合镀层的硬度、沉积速率和耐蚀性的影响。结果表明,随脉冲占空比的增加,镀层硬度、沉积速率和耐蚀性能均呈现先增大后减小的趋势;ZrO2纳米微粒的增加使镀层硬度增加,而沉积速率和耐蚀性能为先增大后减小;随脉冲频率的增加,镀层硬度、沉积速率及耐蚀性能均增加。最佳工艺参数应控制占空比为50%、ZrO2纳米微粒质量浓度9g/L、脉冲频率2000Hz。  相似文献   

11.
采用磁场辅助电沉积法在低碳钢表面上制备了纯Ni镀层和Ni–纳米SiC复合镀层。镀液组成和工艺条件为:NiSO4·6H2O285 g/L,NiCl2·6H2O28 g/L,H3BO3 25 g/L,十六烷基三甲基溴化铵80 mg/L,纳米SiC(平均粒径35 nm) 0 g/L或7 g/L,pH 4.8,温度46℃,电流密度5.5 A/dm2,占空比30%,磁场强度0.2 A/m或0.4 A/m,时间30 min。对比了纯Ni镀层和Ni–纳米Si C复合镀层的组织结构、显微硬度和耐磨性,分析了磁场强度对镀层性能的影响。结果表明,在0.2 A/m磁场强度下所得Ni–纳米SiC复合镀层比相同磁场强度下制备的纯Ni镀层更均匀细致,显微硬度更高,耐磨性更强。增大磁场强度至0.4A/m时,Ni–纳米SiC复合镀层的性能进一步提升。  相似文献   

12.
利用脉冲电沉积在304不锈钢上制备了Ni-Al2O3纳米复合镀层,通过正交试验法确定了最佳工艺参数为:硫酸镍280 g/L,氯化镍45 g/L,硼酸40 g/L,十二烷基硫酸钠0.1 g/L,平均电流密度4 A/dm2,占空比40%,脉冲频率600 Hz,纳米Al2O3颗粒质量浓度5 g/L,温度45~55°C,pH 3~4,搅拌速率约220 r/min,电沉积时间60 min.用扫描电子显微镜分析镀层表面形貌,用能谱仪确定镀层中Al2O3含量,用显微硬度计测试镀层的显微硬度,用数码显微镜测量镀层的表面粗糙度,用电化学工作站分析镀层的耐蚀性.结果表明:与直流电沉积复合镀层相比,脉冲复合镀层晶粒尺寸较小、结合紧密,纳米Al2O3颗粒均匀分散,显微硬度和纳米Al2O3颗粒含量高,表面平整,耐蚀性好.  相似文献   

13.
铝基体复合电沉积镍–碳纳米管复合镀层   总被引:1,自引:0,他引:1  
采用电沉积法在铝基体上制备了镍–碳纳米管复合镀层,探讨了镀液中碳纳米管含量、电流密度、搅拌速率、温度、电镀时间等因素对镀层碳纳米管含量和厚度的影响,得出制备镍–碳纳米管复合镀层的适宜工艺条件为:碳纳米管质量浓度4 g/L,电流密度8 A/dm2,搅拌速率440 r/min,温度40°C,沉积时间40 min。采用扫描电镜和X射线衍射仪对镀层表面形貌和成分进行分析,通过电化学测试比较了不同镀层在不同腐蚀介质中的耐腐蚀性。与纯镍镀层相比,镍–碳纳米管复合镀层的晶粒尺寸更小,表面更粗糙,耐腐蚀性更好。  相似文献   

14.
在Q235钢表面脉冲电镀Zn–Ni–Mn合金,镀液组成和工艺条件为:ZnSO_4·7H_2O 43.1 g/L,MnSO_4·H2_O 59.2 g/L,NiSO_4·6H_2O26.3 g/L,Na_3C_6H_5O_7·2H_2O 176.5 g/L,NH_4Cl 30 g/L,H_3BO_3 30 g/L,十二烷基硫酸钠(SDS)0.1 g/L,p H 4.5~6.0,温度30°C,平均电流密度30 m A/cm~2,脉冲占空比20%,脉冲周期1 ms,时间20 min。研究了pH对合金镀层元素组成、沉积速率、表面形貌和耐蚀性的影响。结果表明,随p H增大,沉积速率减小;镀层中锰含量升高,锌、镍含量降低;耐蚀性先增强后减弱。p H为5.0时,所得Zn–Ni–Mn合金镀层平整致密,Zn、Ni和Mn的质量分数分别为85.71%、5.03%和9.26%,中性盐雾试验96 h的保护等级为5级。与Zn–Ni合金镀层(Ni质量分数为12.88%)相比,Zn–Ni–Mn合金镀层的腐蚀电位正移了85 mV,腐蚀电流密度低了约2个数量级,耐蚀性更优。  相似文献   

15.
在由80 g/L Ni(NH_2SO_3)_2·4H_2O、12 g/L Co(NH_2SO_3)_2·4H_2O和40 g/L H_3BO_3组成的基础镀液中加入ZrO_2纳米粒子(平均直径50 nm),通过超声辅助电沉积法制备了Ni–Co–ZrO_2复合镀层,工艺条件为:pH 4.0,电流密度5 A/dm~2,温度50℃,超声功率240 W,极间距40 mm。研究了ZrO_2添加量对Ni–Co–ZrO_2复合镀层的微观结构、显微硬度、耐磨性和热稳定性的影响。ZrO_2纳米粒子的引入使所得复合镀层的表面更加平整、致密,镀层中Ni–Co合金的固溶体结构未发生变化,只是晶粒的择优取向和生长改变。当镀液中ZrO_2添加量为10 g/L时,所得Ni–Co–ZrO_2复合镀层具有较高的显微硬度以及较好的耐磨性和热稳定性。  相似文献   

16.
针对Cu–Ni–Sn合金自润滑性能差的问题,向Cu–Ni–Sn合金镀液中加入聚四氟乙烯(PTFE)乳液,采用电沉积法在45钢表面制备了Cu–Ni–Sn–PTFE复合镀层。镀液组成和工艺条件为:氰化亚铜35 g/L,游离氰化钠10 g/L,锡酸钠10 g/L,氯化镍15 g/L,蛋氨酸20 g/L,甲基磺酸18 g/L,60%PTFE乳液5~15 m L/L,电流密度1 A/dm~2,温度50~60°C,pH 10,时间2 h。考察了镀液PTFE含量对镀层的耐磨性、显微硬度、结合力、PTFE含量以及外观的影响,表征了Cu–Ni–Sn–PTFE复合镀层的形貌、结构和成分。随着镀液PTFE含量的升高,镀层的耐磨性改善,但显微硬度和结合力下降,厚度和PTFE含量则先升后降。镀液中PTFE的最佳添加量为10 m L/L,此添加量下所得Cu–Ni–Sn–PTFE复合镀层的综合性能最佳。  相似文献   

17.
在钢试片上复合电沉积Ni–ZrO_2,使微米级的ZrO_2颗粒镶嵌在镍镀层中而形成具有一定粗糙度的表面。通过正交试验研究了NiSO_4·6H_2O、ZrO_2和十二烷基硫酸钠(SDS)添加量,电流密度和温度对Ni–ZrO_2复合镀层耐蚀性、显微硬度和粗糙度的影响。结果表明,电流密度对镀层耐蚀性的影响最大,温度对镀层粗糙度的影响最大。综合考虑Ni–ZrO_2复合镀层的显微硬度、耐蚀性和粗糙度3个指标,得到复合电沉积Ni–ZrO_2的最优工艺为:NiSO_4·6H_2O 280 g/L,NiC_(12)·6H_2O 30~60 g/L,H_3BO_3 30~40 g/L,ZrO_2 30 g/L,SDS 120 mg/L,1,4-丁炔二醇和糖精适量,电流密度3 A/dm2,温度45°C。在最优工艺条件下,Ni–ZrO_2复合镀层的耐蚀性最好,显微硬度为587.3 HV,粗糙度为14.327 4μm,比钢试片高一个数量级左右。  相似文献   

18.
采用脉冲电沉积技术在304不锈钢表面制备Ni-Cu合金镀层,镀液组成和工艺条件为:NiSO4ꞏ6H2O 200g/L,CuSO4ꞏ5H2O 10 g/L,十二烷基硫酸钠0.2 g/L,柠檬酸钠80 g/L,糖精0.2 g/L,pH 4.0,温度25°C,搅拌速率30 r/min,平均电流密度40~120 mA/cm2,脉冲频率0~100 Hz,占空比20%~90%,时间30 min。研究了平均电流密度、脉冲频率和占空比对Ni-Cu合金镀层的元素组成、表面形貌和显微硬度的影响,得到较优的工艺参数为:平均电流密度40 mA/cm2,脉冲频率50 Hz,占空比60%。该条件下所得Ni-Cu合金镀层由质量分数分别为56.53%和43.47%的Ni和Cu组成,呈“菜花”状形貌,结晶细致、均匀,显微硬度为614.4 HV。  相似文献   

19.
在45钢表面以超声波辅助脉冲电沉积制备Ni-TiN复合镀层。研究了平均阴极电流密度、脉冲占空比、超声功率和TiN粒子(平均直径20~30 nm)添加量对复合镀层的TiN粒子含量和显微硬度的影响。得到较优的工艺参数为:NiSO4ꞏ6H2O 300 g/L,NiCl2ꞏ6H2O 30 g/L,H3BO330 g/L,十二烷基硫酸钠0.3 g/L,TiN 25 g/L,pH 4.1~4.3,温度40°C,平均阴极电流密度4 A/dm2,脉冲占空比40%,脉冲频率1000 Hz,超声功率300 W,机械搅拌速率200 r/min,时间60 min。该条件下所得Ni-TiN复合镀层的TiN质量分数为8.35%,显微硬度为819 HV,表面平整、致密,晶粒尺寸均匀。  相似文献   

20.
采用包覆有50%(质量分数)Ni的C_(r3)C_2微米颗粒(粒径3~5μm)为第二相,以脉冲喷射电沉积制备Co–C_(r3)C_2复合镀层。镀液组成和工艺参数为:CoSO_4·7H_2O 430 g/L,C_(r3)C_2 200 g/L,H_3BO_3 30 g/L,NaCl 5 g/L,十六烷基三甲基溴化铵适量,pH=4,温度40°C,电压18 V,镀液流量2.4 L/min,喷头移动速率1.2 mm/s。研究了脉冲参数对复合镀层颗粒复合量、表面粗糙度、显微硬度以及耐磨性的影响,并探讨了颗粒复合量对镀层性能的影响。C_(r3)C_2颗粒的复合量越高,复合镀层的显微硬度就越高,耐磨性也越好,但表面粗糙度增大。最优脉冲参数为:占空比30%,脉冲周期200 ms。所得Co–C_(r3)C_2复合镀层的颗粒含量达11.98%,显微硬度为542.6 HV,摩擦因数为0.443。C_(r3)C_2颗粒在镀层中分布均匀,与基质金属结合牢固。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号