首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Lee DS  Jeon CO  Park JM 《Water research》2001,35(16):3968-3976
Simultaneous biological phosphorus and nitrogen removal with enhanced anoxic phosphate uptake was investigated in an anaerobic-aerobic-anoxic-aerobic sequencing batch reactor ((AO)2 SBR). Significant amounts of phosphorus-accumulation organisms (PAOs) capable of denitrification could be accumulated in a single sludge system coexisting with nitrifiers. The ratio of the anoxic phosphate uptake to the aerobic phosphate uptake capacity was increased from 11% to 64% by introducing an anoxic phase in an anaerobic aerobic SBR. The (AO)2 SBR system showed stable phosphorus and nitrogen removal performance. Average removal efficiencies of TOC, total nitrogen, and phosphorus were 92%, 88%, and 100%, respectively. It was found that nitrite (up to 10 mg NO2(-)-N/l) was not detrimental to the anoxic phosphate uptake and could serve as an electron acceptor like nitrate. In fact, the phosphate uptake rate was even faster in the presence of nitrite as an electron acceptor compared to the presence of nitrate. It was found that on-line sensor values of pH, ORP, and DO were somehow related with the dynamic behaviours of nutrient concentrations (NH4+, NO3-, and PO4(3-)) in the SBR. These on-line sensor values were used as real-time control parameters to adjust the duration of each operational phase in the (AO)2 SBR. The real-time controlled SBR exhibited better performance in the removal of phosphorus and nitrogen than the SBR with fixed-time operation.  相似文献   

2.
喷射环流反应器同步硝化反硝化机理的研究   总被引:2,自引:0,他引:2  
喷射环流反应器在好氧条件下具有良好的脱氮性能,其对氨氮和总氮的去除率分别达到80%和70%以上,且两者的去除率成正比.试验测定了反应器出水中NOx^--N的含量,结果表明出水中的氮主要以氨氮和亚硝酸盐氮的形式存在,证明该反应器在硝化过程中实现了对亚硝酸盐的积累.反应器的脱氮效果随进水C/N值的增加而提高,证明了异养硝化细菌的存在.对废水处理过程中产生的废气进行气相色谱分析,结果表明废气中氮气的含量比空气的增加了0.24%,证明反应器中发生了反硝化反应.综合试验结果表明,喷射环流反应器中的脱氮机理为亚硝酸盐型同步硝化反硝化.  相似文献   

3.
Nitrospira and Nitrobacter are nitrite-oxidising bacteria commonly identified in nitrogen removal wastewater treatment plants. Little is known about the growth parameters of Nitrospira or the effects of environmental conditions or inhibitory compounds on Nitrospira activity. These bacterial properties were investigated using an enriched Nitrospira culture and an enriched Nitrobacter culture or Nitrobacter literature values. Compared to Nitrobacter, Nitrospira was found to have a comparable optimal pH range (8.0-8.3); similar normalised activity-temperature relationship (0.44e(0.055(T-15))) for temperatures between 15 and 30 degrees C and a similar oxygen half-saturation constant, K(O) (0.54+/-0.14 mgL(-1)). The major differences identified were that Nitrospira had a lower nitrite half-saturation constant, K(S) (0.9+/-0.07 mgNO(2)-NL(-1)); lower inhibition threshold concentrations for free ammonia (between 0.04 and 0.08 mg NH(3)-NL(-1)) and free nitrous acid (less than 0.03 mg HNO(2)-NL(-1)) and a higher yield (0.15+/-0.04 g VSS g N(-1)). Therefore, Nitrospira is more likely to dominate nitrite oxidation under conditions with low ammonium and nitrite concentrations, which would provide an advantage to them due to their lower K(S) value while avoiding any free ammonia or free nitrous acid inhibition.  相似文献   

4.
Batch test were performed to assess nitrite removal, nitrate formation, CO2 fixation, gaseous nitrogen production and microbial density in activated sludge exposed to volatile fatty acid (VFA) mixtures. Nitrite removal and nitrate formation were both affected by the presence of VFAs, but to different degrees. Nitrate formation rates were reduced to a greater extent (79%) than nitrite removal rates (36%) resulting in an apparent unbalanced nitrite oxidation reaction. Since the total bacterial density and the nitrite oxidizing bacteria (NOB, Nitrospira) concentration remained essentially constant under all test conditions, the reduction in rates was not due to heterotrophic uptake of nitrogen or to a decrease in the NOB population. In contrast to the nitrogen results, VFAs were not found to impact CO2 fixation efficiency. It appeared that nitrite oxidation occurred when VFAs were present since the oxidation of nitrite provides energy for CO2 fixation. However, nitrate produced from the oxidation of nitrite was reduced to gaseous nitrogen products. N2O gas was detected in the presence of VFAs which was a clear indication that VFAs stimulated an alternative pathway, such as aerobic denitrification, during biotransformation of nitrogen in activated sludge.  相似文献   

5.
In order to better understand the mechanisms of N(2)O emissions from nitrifying activated sludge of urban WWTPs, sludge from the Valenton plant (Paris conurbation) are subjected to lab-scale batch experiments under various conditions of oxygenation. The results show that the highest N(2)O emissions (7.1 microgN-N(2)OgSS(-1) h(-1) in average) occur at a dissolved oxygen (DO) concentration of around 1mgO(2)L(-1). These high emissions at low oxygenation (from 0.1 to 2 mg O(2)L(-1)) are due to two processes: autotrophic nitrifier denitrification and heterotrophic denitrification. Nitrifier denitrification always dominates, representing from 58% to 83% of the N(2)O production. This N(2)O production originating from nitrifying activated sludge becomes 8 times higher when nitrite is added at a DO of 1 mg O(2)L(-1); a decrease is observed both at higher and lower oxygenation. Heterotrophic denitrification represents less than 50% of the N(2)O production, decreasing from 42% to 17% when oxygenation increases from 0.1 to 2 mg O(2) L(-1). We show that ammonium oxidizing bacteria (AOB) can shift to nitrifier denitrification when oxygen is depleted in the environments including in the WWTPs, nitrite then plays the role of oxygen as the final electron acceptor. As opposed to what happens in nitrification, the end products of nitrifier denitrification are gaseous forms of nitrogen, where N(2)O is not negligible compared to N(2). Overall, N(2)O emissions represent 0.1-0.4% of oxidized NH(4)(+), depending on the oxygenation level. N(2)O emissions would range from 0.11 to 0.42 TN-N(2)O day(-1) for a tertiary treatment of the Paris wastewater effluents, consisting exclusively of activated sludge nitrification.  相似文献   

6.
The removal of gaseous ammonia in a system consisting of a biotrickling filter, a denitrification reactor and a polishing bioreactor for the trickling liquid was investigated. The system allowed sustained treatment of ammonia while preventing biological inhibition by accumulating nitrate and nitrite and avoiding generation of contaminated water. All bioreactors were packed with cattle bone composite ceramics, a porous support with a large interfacial area. Excellent removal of ammonia gas was obtained. The critical loading ranged from 60 to 120 gm(-3)h(-1) depending on the conditions, and loadings below 56 gm(-3)h(-1) resulted in essentially complete removal of ammonia. In addition, concentrations of ammonia, nitrite, nitrate and COD in the recycle liquid of the inlet and outlet of each reactor were measured to determine the fate of nitrogen in the reactor, close nitrogen balances and calculate nitrogen to COD ratios. Ammonia absorption and nitrification occurred in the biotrickling filter; nitrate and nitrite were biologically removed in the denitrification reactor and excess dissolved COD and ammonia were treated in the polishing bioreactor. Overall, ammonia gas was very successfully removed in the bioreactor system and steady state operation with respect to nitrogen species was achieved.  相似文献   

7.
High autotrophic nitrogen removal rates of 858mg NL(-1) day(-1) or 1.55g Nm(-2) day(-1) were obtained in a lab-scale rotating biological contactor treating an ammonium rich influent. It was postulated that ammonium was removed as dinitrogen gas by a sequence of aerobic ammonium oxidation to nitrite taking place in the outer biofilm layer and anaerobic ammonium oxidation with nitrite as electron acceptor occuring in the deeper biofilm layer. Chemical evidence for anaerobic ammonium oxidation within intact biofilm sludge from a lab-scale rotating biological contactor could be provided, without direct identification of responsible organisms catalysing this reaction. 15N tracer techniques were used for identification and quantification of nitrogen transformations. In batch tests with biofilm sludge at dissolved oxygen concentrations lower than 0.1mgL(-1), ammonium and nitrite did react in a stoichiometric ratio of 1:1.43 thereby forming dinitrogen. 15N isotope dilution calculations revealed that anaerobic ammonium oxidation was the major nitrogen transformation leading to concomitant ammonium and nitrite removal. Isotopic analysis of the produced biogas showed that both ammonium-N and nitrite-N were incorporated in N(2).  相似文献   

8.
Orbal氧化沟生物脱氮的中试研究   总被引:2,自引:1,他引:2  
采用有效容积为330L的中试Orbal氧化沟模型处理城市污水,研究了Orbal氧化沟的同时硝化反硝化生物脱氮现象。结果表明,Orbal氧化沟具有良好的降解有机物和硝化性能;在不投加外碳源和不设硝化液内回流的条件下,通过控制DO浓度分布,可以实现氧化沟内的同时硝化反硝化,对总氮去除率平均为61%,出水总氮平均为14mg/L。经分析认为,DO浓度分布是氧化沟内同时硝化反硝化的决定因素,进水中的COD/TN是影响总氮去除率的重要因素;通过控制外沟低DO运行,可以稳定实现Orbal氧化沟的低能耗高效脱氮;多沟道串联的反应器布置方式有效防止了低DO运行带来的亚硝酸盐积累和污泥膨胀的发生。  相似文献   

9.
Fux C  Velten S  Carozzi V  Solley D  Keller J 《Water research》2006,40(14):2765-2775
Separate treatment of dewatering liquor from anaerobic sludge digestion significantly reduces the nitrogen load of the main stream and improves overall nitrogen elimination. Such ammonium-rich wastewater is particularly suited to be treated by high rate processes which achieve a rapid elimination of nitrogen with a minimal COD requirement. Processes whereby ammonium is oxidised to nitrite only (nitritation) followed by denitritation with carbon addition can achieve this. Nitrogen removal by nitritation/denitritation was optimised using a novel SBR operation with continuous dewatering liquor addition. Efficient and robust nitrogen elimination was obtained at a total hydraulic retention time of 1 day via the nitrite pathway. Around 85-90% nitrogen removal was achieved at an ammonium loading rate of 1.2 kg [corrected] NH(4)(+)-N m(-3)d(-1). Ethanol was used as electron donor for denitritation at a ratio of 2.2 g COD g(-1) N removed. Conventional nitritation/denitritation with rapid addition of the dewatering liquor at the beginning of the cycle often resulted in considerable nitric oxide (NO) accumulation during the anoxic phase possibly leading to unstable denitritation. Some NO production was still observed in the novel continuous mode, but denitritation was never seriously affected. Thus, process stability can be increased and the high specific reaction rates as well as the continuous feeding result in decreased reactor size for full-scale operation.  相似文献   

10.
Yilmaz G  Lemaire R  Keller J  Yuan Z 《Water research》2007,41(12):2590-2598
The effectiveness of an aerobic, anoxic/anaerobic strategy for maintaining the activity of activated sludge performing biological nitrogen and phosphorus removal during long-term starvation is investigated. A lab-scale sequencing batch reactor (SBR) treating abattoir wastewater and achieving high-levels (>95%) of nitrogen, phosphorus and COD removal was used. The reactor was put twice into a so-called "sleeping mode" for a period of 5-6 weeks when the abattoir, where the wastewater was sourced, was closed down for annual maintenance. The "sleeping mode" operation consisted of 15 min aeration in a 6 h SBR cycle. The sludge was allowed to settle in the remaining time of the cycle. The decay rates for ammonia oxidising bacteria (AOB) and nitrite oxidising bacteria (NOB) were determined to be 0.017 and 0.004 d(-1), respectively. These decay rates correlated well with AOB and NOB population quantified using molecular techniques (FISH). There was negligible phosphate accumulation in the reactor during the first 1-2 weeks of starvation, which was followed by a linear net release of phosphate in the remaining 4-5 weeks at a very slow rate of 1-2 mgP gVSS(-1)d(-1). A sudden decrease in the aerobic activities of polyphosphate accumulating organisms (PAOs), observed via anaerobic/aerobic batch tests, occurred after 2 weeks of starvation. This correlated with a dramatic increase of several metal ions in the liquid phase. The underlying reasons are not clear. A resuscitation period with a gradual increase of the wastewater load was applied during the re-startup of the reactor after both "sleeping mode" periods. Each time, the performance of the reactor in terms of nitrogen and phosphorus removal fully recovered in 4 days.  相似文献   

11.
Microbial fuel cells for simultaneous carbon and nitrogen removal   总被引:10,自引:0,他引:10  
Virdis B  Rabaey K  Yuan Z  Keller J 《Water research》2008,42(12):3013-3024
The recent demonstration of cathodic nitrate reduction in a microbial fuel cell (MFC) creates opportunities for a new technology for nitrogen removal from wastewater. A novel process configuration that achieves both carbon and nitrogen removal using MFC is designed and demonstrated. The process involves feeding the ammonium-containing effluent from the carbon-utilising anode to an external biofilm-based aerobic reactor for nitrification, and then feeding the nitrified liquor to the MFC cathode for nitrate reduction. Removal rates up to 2 kg COD m(-3)NCC d(-1) (chemical oxygen demand: COD, net cathodic compartment: NCC) and 0.41 kg NO(3)(-)-Nm(-3)NCC d(-1) were continuously achieved in the anodic and cathodic compartment, respectively, while the MFC was producing a maximum power output of 34.6+/-1.1 Wm(-3)NCC and a maximum current of 133.3+/-1.0 Am(-3)NCC. In comparison to conventional activated sludge systems, this MFC-based process achieves nitrogen removal with a decreased carbon requirement. A COD/N ratio of approximately 4.5 g COD g(-1) N was achieved, compared to the conventionally required ratio of above 7. We have demonstrated that also nitrite can be used as cathodic electron acceptor. Hence, upon creating a loop concept based on nitrite, a further reduction of the COD/N ratio would be possible. The process is also more energy effective not only due to the energy production coupled with denitrification, but also because of the reduced aeration costs due to minimised aerobic consumption of organic carbon.  相似文献   

12.
The inhibitory effect of free ammonia (FA;NH(3)) on the metabolism of Nitrobacter is investigated using a method that allows decoupling energy generation from growth processes. A lab-scale sequencing batch reactor (SBR) was operated for the enrichment of Nitrobacter. Fluorescent in situ hybridization (FISH) analysis showed that 73% of the bacterial population in the reactor was Nitrobacter, while no Nitrospira was detected. Batch tests were carried out to measure the oxygen uptake rate (OUR) by the culture at various FA levels, in the presence (OUR with CO(2)) or absence (OUR without CO(2)) of inorganic carbon (CO(2), HCO(3)(-) and CO(3)(2-)). The FA inhibition on the respiration initiated at below 1mgNH(3)-NL(-1) in both cases. OUR without CO(2) gradually decreased by 12% when the FA concentration increased from 0 to approximately 4mgNH(3)-NL(-1) and remained at the same level till an FA level of 9mgNH(3)-NL(-1) (the highest FA concentration applied in this study). This indicates that FA has a limited inhibitory effect on the respiratory capability of Nitrobacter. Starting from a level that is 15% higher than OUR without CO(2) when no FA was present, OUR with CO(2)decreased more rapidly than OUR without CO(2) reaching the same level as OUR without CO(2) when FA was between 6-9mgNH(3)-NL(-1). This implies that in this range of FA the presence of inorganic carbon did not cause any increase in the respiration activity of Nitrobacter. The results suggest that, while still oxidizing nitrite at approximately 75% of the non-inhibited rate, Nitrobacter likely ceased to grow at an FA level of above 6mgNH(3)-NL(-1). While the real mechanisms remain to be identified, this study indicates that the FA inhibition on Nitrobacter is likely much more serious than suggested by previous studies where OUR with CO(2) (or the equivalent nitrite oxidation rate) was used as the sole measure of the inhibitory effects.  相似文献   

13.
Quantification of ammonia volatilisation from wastewater stabilisation ponds is important in order to understand its significance for overall nitrogen removal in these widely applied low-cost treatment systems. Ammonia volatilisation rates were measured in pilot plant facilities consisting of one line of four algae-based ponds in series and a parallel line of four ponds with a floating mat of duckweed (Lemna gibba). Ammonia volatilisation was assessed during a period of one and a half years. The method applied is accurate, convenient and is proposed for analysis of a wide range of gasses emitted from stabilisation ponds and possibly other aquatic systems. The ammonia volatilisation rates in algae-based ponds (ABPs) were higher than in duckweed-based ponds (DBPs). This can be explained by the lower values of NH(3) in DBPs due to shading and lower pH values, since the volatilisation rate highly correlated with free ammonia concentration (NH(3)) in pond water. The duckweed cover appeared not to provide a physical barrier for volatilisation of unionised ammonia, because whenever NH(3) concentrations were equal in ABP and DBP also the volatilisation rates were equal. Volatilisation was in the range of 7.2-37.4 mg-Nm(-2)d(-1) and 6.4 -31.5 mg-Nm(-2)d(-1) in the ABPs and DBPs, respectively. Average influent and effluent ammonium nitrogen measurements showed that the ammonia volatilisation during the study period in any system did not exceed 1.5% of total ammonium nitrogen removal. Therefore this study confirmed results from simultaneous experimental work in our laboratory indicating that nitrification/denitrification, rather than ammonia volatilisation, is the most important mechanism for N removal in ABPs and DBPs.  相似文献   

14.
Removal of nitrogen is a key aspect in the functioning of constructed wetlands. However, incomplete denitrification may result in the net emission of the greenhouse gas nitrous oxide (N2O) resulting in an undesired effect of a system supposed to provide an ecosystem service. In this work we evaluated the genetic potential for N2O emissions in relation to the presence or absence of Phragmites and Typha in a free water surface constructed wetland (FWS-CW), since vegetation, through the increase in organic matter due to litter degradation, may significantly affect the denitrification capacity in planted areas. Quantitative real-time PCR analyses of genes in the denitrification pathway indicating capacity to produce or reduce N2O were conducted at periods of different water discharge. Genetic potential for N2O emissions was estimated from the relative abundances of all denitrification genes and nitrous oxide reductase encoding genes (nosZ). nosZ abundance was invariably lower than the other denitrifying genes (down to 100 fold), and differences increased significantly during periods of high nitrate loads in the CW suggesting a higher genetic potential for N2O emissions. This situation coincided with lower nitrogen removal efficiencies in the treatment cell. The presence and the type of vegetation, mainly due to changes in the sediment carbon and nitrogen content, correlated negatively to the ratio between nitrate and nitrite reducers and positively to the ratio between nitrite and nitrous oxide reducers. These results suggest that the potential for nitrous oxide emissions is higher in vegetated sediments.  相似文献   

15.
Franco A  Roca E  Lema JM 《Water research》2006,40(5):871-880
In this work, the effect of the application of a pulse system to anoxic upflow sludge bed (USB) denitrifying reactors for enhancing sludge granulation was studied. In all, three 0.8 L reactors (two operated with flow pulsation, P1 with effluent recycling and P2 without recycling, and one without pulsation and effluent recycling, no pulsation (NP)) were fed with a mixture of NaNO3 and glucose and inoculated with methanogenic granular sludge. The organic loading rate (OLR) and the nitrogen loading rate (NLR) were progressively increased and, at the end of the experiment, extremely high values were obtained (67.5 kgCOD/m3d and 11.25 kgN-NO3-/m3 d). Ammonia and nitrite accumulation in reactor NP were important in the maturation stage, decreasing the denitrification efficiency to 90%, while in reactor P1 only low nitrite values were obtained in the last few days of the experiment. In reactor P2, nitrogen removal was 100% most of the time. Several operational problems (flotation and the subsequent wash out of biomass) appeared in the NP reactor when working at high denitrifying loading rates, while in reactors P1 and P2 there were no notable problems, mainly due to the good characteristics of the sludge developed and the efficient degasification produced by the pulsing flow. The sludge formed in the NP reactor presented a flocculent structure and a total disintegration of the initial methanogenic granules occurred, while a small-sized granular biomass with a high specific density was developed in the pulsed reactors due to the shear stress produced.  相似文献   

16.
Biological wastewater treatment by aerobic granular sludge biofilms offers the possibility to combine carbon (COD), nitrogen (N) and phosphorus (P) removal in a single reactor. Since denitrification can be affected by suboptimal dissolved oxygen concentrations (DO) and limited availability of COD, different aeration strategies and COD loads were tested to improve N- and P-removal in granular sludge systems. Aeration strategies promoting alternating nitrification and denitrification (AND) were studied to improve reactor efficiencies in comparison with more classical simultaneous nitrification–denitrification (SND) strategies. With nutrient loading rates of 1.6 gCOD L−1 d−1, 0.2 gN L−1 d−1, and 0.08 gP L−1 d−1, and SND aeration strategies, N-removal was limited to 62.3 ± 3.4%. Higher COD loads markedly improved N-removal showing that denitrification was limited by COD. AND strategies were more efficient than SND strategies. Alternating high and low DO phases during the aeration phase increased N-removal to 71.2 ± 5.6% with a COD loading rate of 1.6 gCOD L−1 d−1. Periods of low DO were presumably favorable to denitrifying P-removal saving COD necessary for heterotrophic N-removal. Intermittent aeration with anoxic periods without mixing between the aeration pulses was even more favorable to N-removal, resulting in 78.3 ± 2.9% N-removal with the lowest COD loading rate tested. P-removal was under all tested conditions between 88 and 98%, and was negatively correlated with the concentration of nitrite and nitrate in the effluent (r = −0.74, p < 0.01). With low COD loading rates, important emissions of undesired N2O gas were observed and a total of 7–9% of N left the reactor as N2O. However, N2O emissions significantly decreased with higher COD loads under AND conditions.  相似文献   

17.
K Isaka  Y Kimura  T Osaka  S Tsuneda 《Water research》2012,46(16):4941-4948
This study evaluated the nitrogen removal performance of polyethylene glycol (PEG) gel carriers containing entrapped heterotrophic denitrifying bacteria. A laboratory-scale denitrification reactor was operated for treatment of synthetic nitrate wastewater. The nitrogen removal activity gradually increased in continuous feed experiments, reaching 4.4 kg N m−3 d−1 on day 16 (30 °C). A maximum nitrogen removal rate of 5.1 kg N m−3 d−1 was observed. A high nitrogen removal efficiency of 92% on average was observed at a high loading rate. In batch experiments, the denitrifying gel carriers were characterized by temperature. Nitrate and total nitrogen removal activities both increased with increasing temperature, reaching a maximum at 37 and 43 °C, respectively. Apparent activation energies for nitrate and nitrite reduction were 52.1 and 71.9 kJ mol−1, respectively. Clone library analysis performed on the basis of the 16S rRNA gene revealed that Hyphomicrobium was mainly involved in denitrification in the methanol-fed denitrification reactors.  相似文献   

18.
Gupta AB  Gupta SK 《Water research》2001,35(7):1714-1722
High strength domestic wastewater discharges after no/partial treatment through sewage treatment plants or septic tank seepage field systems have resulted in a large build-up of groundwater nitrates in Rajasthan, India. The groundwater table is very deep and nitrate concentrations of 500-750 mg/l (113-169 as NO3(-)-N) are commonly found. A novel biofilm in a 3-stage lab-scale rotating biological contactor (RBC) was developed by the incorporation of a sulphur oxidising bacterium Thiosphaera pantotropha which exhibited high simultaneous removal of carbon and nitrogen in fully aerobic conditions. T. pantotropha has been shown to be capable of simultaneous heterotrophic nitrification and aerobic denitrification thereby helping the steps of carbon oxidation, nitrification and denitrification to be carried out concurrently. The first stage having T. pantotropha dominated biofilm showed high carbon and NH4(+)-N removal rates of 8.7-25.9 g COD/m2 d and 0.81-1.85 g N/m2 d for the corresponding loadings of 10.0-32.0 g COD/m2 d and 1.0-3.35 g N/m2 d. The ratio of carbon removed to nitrogen removed was close to 12.0. The nitrification rate increased from 0.81 to 1.8 g N/m2 d with the increasing nitrogen loading rates despite a high simultaneous organic loading rate. However, it fell to 1.53 g N/m2 d at a high load of 3.35 g N/m2 d and 32 g COD/m2 d showing a possible inhibition of the process. A simultaneous 44-63% removal of nitrogen was also achieved without any significant NO2(-)-N or NO3(-)-N build-up. The second and third stages, almost devoid of any organic carbon, acted only as autotrophic nitrification units, converting the NH4(+)-N from stage 1 to nitrite and nitrate. Such a system would not need a separate carbon oxidation step to increase nitrification rates and no external carbon source for denitrification. The alkalinity compensation during denitrification for that destroyed in nitrification may also result in a high economy.  相似文献   

19.
一体式膜生物反应器同步硝化反硝化性能研究   总被引:2,自引:0,他引:2  
构建了气升循环一体式膜生物反应器,将其用于处理城市污水,并对其同步硝化反硝化(SND)的形成过程进行了研究。结果表明,反应器内存在明显的好氧区和厌氧区,并利用曝气推动力实现硝化液在各区间的循环,能够形成良好的硝化和反硝化过程;在反应器结构一定的条件下,曝气强度成为制约溶解氧大小和分布的最主要因素,过大或过小的曝气强度对TN的去除都是不利的,当曝气强度控制在50~70 m3/(m2.h)时,系统对TN的去除效果最好,去除率为48.1%~54.0%,实现了较好的同步硝化反硝化效果。  相似文献   

20.
序批式生物膜法的脱氮特性研究   总被引:2,自引:0,他引:2  
对序批式生物膜工艺的脱氮特性进行了探讨,并提出了过量储存-SND脱氮作用机理,即厌氧段脱氮主要靠生物膜对含碳、氮有机物的过量储存作用,而好氧段脱氮则靠生物膜的同步硝化反硝化(SND)作用,反硝化的有机碳源主要为生物膜在厌氧段过量储存的有机物。镜检发现反应器中的优势菌属为假单胞菌属,其次为气单胞菌属、芽孢杆菌属、微球菌属、硝化杆菌属。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号