首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
The effect of substrate temperature, 390-480?°C, during molecular beam epitaxy growth of InAsN quantum dots has been studied. The quantum dot formation was studied in situ, and it is shown that the quantum dots are close to fully relaxed within 4 monolayers (ML) of InAsN deposition. Further, the indium concentration was estimated to be 84%, 67%, 55% and 31% for 4?ML thick quantum dots grown at 390, 420, 450 and 480?°C, respectively. Thus, Ga incorporation was demonstrated at all substrate temperatures. The dot diameter and height increased from 23 to 38?nm, and 2.5 to 8.9?nm, respectively, when the growth temperature was increased from 390 to 480?°C. The 5?K photoluminescence intensity and wavelength both increased with substrate temperature.  相似文献   

2.
We report on the effects of patterning and layering on multilayer InAs/GaAs(001) quantum dot structures laterally ordered using an in vacuo focused ion beam. The patterned hole size and lateral pattern spacing affected the quantum dot size and the fidelity of the quantum dots with respect to the lateral patterns. 100% pattern fidelity was retained after six layers of dots for a 9.0 ms focused ion beam dwell time and 2.0 μm lateral pattern spacing. Analysis of the change in quantum dot size as a function of pattern spacing provided a means of estimating the maximum average adatom surface diffusion length to be approximately 500 nm, and demonstrated the ability to alter the wetting layer thickness via pattern spacing. Increasing the number of layers from six to 26 resulted in mound formation, which destroyed the pattern fidelity at close pattern spacings and led to a bimodal quantum dot size distribution as measured by atomic force microscopy. The bimodal size distribution also affected the optical properties of the dots, causing a split quantum dot photoluminescence peak where the separation between the split peaks increased with increasing pattern spacing.  相似文献   

3.
Yin Z  Tang X  Zhang J  Deny S  Teng J  Du A  Chin MK 《Nanotechnology》2008,19(8):085603
First-step nucleation growth has an important impact on the two-step growth of high-quality mid-infrared emissive InAs/InGaAs/InP quantum dots (QDs). It has been found that an optimized growth rate for first-step nucleation is critical for forming QDs with narrow size distribution, high dot density and high crystal quality. High growth temperature has an advantage in removing defects in the QDs formed, but the dot density will be reduced. Contrasting behavior in forming InAs QDs using metal-organic vapor phase epitaxy (MOVPE) by varying the input flux ratio of group-V versus group-III source (V/III ratio) in the first-step nucleation growth has been observed and investigated. High-density, 2.5 × 10(10)?cm(-2), InAs QDs emitting at>2.15?μm have been formed with narrow size distribution, ~1?nm standard deviation, by reducing the V/III ratio to zero in first-step nucleation growth.  相似文献   

4.
Ke WC  Fu CP  Huang CC  Ku CS  Lee L  Chen CY  Tsai WC  Chen WK  Lee MC  Chou WC  Lin WJ  Cheng YC 《Nanotechnology》2006,17(10):2609-2613
GaN quantum dots were grown on an Al(0.11)Ga(0.89)N buffer layer by using flow rate modulation epitaxy. The Stranski-Krastanov growth mode was identified by an atomic force microscopy study. The thickness of the wetting layer is about 7.2 monolayers. The temperature dependent photoluminescence studies showed that at low temperature the localization energy, which accounts for de-trapping of excitons, decreases with the reducing dot size. The decrease in emission efficiency at high temperature is attributed to the activation of carriers from the GaN dot to the nitrogen vacancy (V(N)) state of the Al(0.11)Ga(0.89)N barrier layer. The activation energy decreases with reducing dot size.  相似文献   

5.
MRI detectable and targeted quantum dots were developed. To that aim, quantum dots were coated with paramagnetic and pegylated lipids, which resulted in a relaxivity, r(1), of nearly 2000 mM(-1)s(-1) per quantum dot. The quantum dots were functionalized by covalently linking alphavbeta3-specific RGD peptides, and the specificity was assessed and confirmed on cultured endothelial cells. The bimodal character, the high relaxivity, and the specificity of this nanoparticulate probe make it an excellent contrast agent for molecular imaging purposes.  相似文献   

6.
Modern nanotechnology offers routes to create new artificial materials, widening the functionality of devices in physics, chemistry, and biology. Templated self-organization has been recognized as a possible route to achieve exact positioning of quantum dots to create quantum dot arrays, molecules, and crystals. Here we employ extreme ultraviolet interference lithography (EUV-IL) at a wavelength of lambda = 13.5 nm for fast, large-area exposure of templates with perfect periodicity. Si(001) substrates have been patterned with two-dimensional hole arrays using EUV-IL and reactive ion etching. On these substrates, three-dimensionally ordered SiGe quantum dot crystals with the so far smallest quantum dot sizes and periods both in lateral and vertical directions have been grown by molecular beam epitaxy. X-ray diffractometry from a sample volume corresponding to about 3.6 x 10(7) dots and atomic force microscopy (AFM) reveal an up to now unmatched structural perfection of the quantum dot crystal and a narrow quantum dot size distribution. Intense interband photoluminescence has been observed up to room temperature, indicating a low defect density in the three-dimensional (3D) SiGe quantum dot crystals. Using the Ge concentration and dot shapes determined by X-ray and AFM measurements as input parameters for 3D band structure calculations, an excellent quantitative agreement between measured and calculated PL energies is obtained. The calculations show that the band structure of the 3D ordered quantum dot crystal is significantly modified by the artificial periodicity. A calculation of the variation of the eigenenergies based on the statistical variation in the dot dimensions as determined experimentally (+/-10% in linear dimensions) shows that the calculated electronic coupling between neighboring dots is not destroyed due to the quantum dot size variations. Thus, not only from a structural point of view but also with respect to the band structure, the 3D ordered quantum dots can be regarded as artificial crystal.  相似文献   

7.
We theoretically investigated the elastic deformation and piezoelectric field in InAs quantum dots grown on (N11) GaAs substrates. Particular attention was given to the influence of the substrate orientation on both the volume deformation of the dot and the strain-induced piezoelectric field. The piezoelectric effects are enhanced by the lower symmetry growth directions. The influence of the piezoelectric fields on the electron and hole ground states for a (N11) quantum dot was also investigated within the effective mass approximation. We find a significant dependence of the fundamental transition energy on the polarity of the substrate's surface.  相似文献   

8.
The growth of c-plane InGaN quantum dots via modified droplet epitaxy with AlGaN barrier layers is reported. The growth of the AlGaN layer underlying the InGaN quantum dot layer was carried out under H2 at 1050 °C, while the capping AlGaN layer was grown at the same temperature (710 °C) and using the same carrier gas (N2) as that used to grow the InGaN quantum dot layer to prevent decomposition of the InGaN. Atomic force microscopy of InGaN epilayers grown and annealed on high temperature AlGaN using identical growth conditions used for the quantum dot samples highlighted a narrower distribution of nanostructure heights than that obtained for similar growth on GaN. Scanning transmission electron microscopy (STEM) imaging combined with energy dispersive X-ray (EDX) analysis revealed the presence of a thin high aluminium content layer at the surface of both AlGaN layers, which is believed to be related to loss of Ga during temperature ramping processes. Micro-photoluminescence studies carried out at low temperature revealed near resolution-limited peaks while time-resolved measurements on these peaks demonstrated mono-exponential decay times between 1 and 4 ns, showing that quantum dots had successfully been formed between the AlGaN barriers. Temperature-dependant measurement of the emission lines revealed that quenching of the peak often occurred at ∼60–70 K, with some of the peaks exhibiting significant line broadening whilst others remained narrow.  相似文献   

9.
Zhang J  Li Q  Di X  Liu Z  Xu G 《Nanotechnology》2008,19(43):435606
Multicolored semiconductor quantum dots have shown great promise for construction of miniaturized light-emitting diodes with compact size, low weight and cost, and high luminescent efficiency. The unique size-dependent luminescent property of quantum dots offers the feasibility of constructing single-color or full-color output light-emitting diodes with one type of material. In this paper, we have demonstrated the facile fabrication of blue-, green-, red-?and full-color-emitting semiconductor quantum dot optical films via a layer-by-layer assembly technique. The optical films were constructed by alternative deposition of different colored quantum dots with a series of oppositely charged species, in particular, the new use of cationic starch on glass substrates. Semiconductor ZnSe quantum dots exhibiting blue emission were deposited for fabrication of blue-emitting optical films, while semiconductor CdTe quantum dots with green and red emission were utilized for construction of green-?and red-emitting optical films. The assembly of integrated blue, green and red semiconductor quantum dots resulted in full-color-emitting optical films. The luminescent optical films showed very bright emitting colors under UV irradiation, and displayed dense, smooth and efficient luminous features, showing brighter luminescence in comparison with their corresponding quantum dot aqueous colloid solutions. The assembled optical films provide the prospect of miniaturized light-emitting-diode applications.  相似文献   

10.
对透镜形自组织生长量子点的应变分布进行了研究。主要分析了透镜形状的量子点形貌对应变分布的影响,针对开放量子点(无盖层)和非开放量子点(有盖层)情况分别进行了讨论。结果表明,无论有无盖层,横向大尺寸量子点内部的应变分布趋向于均匀,无盖层量子点与有盖层情况相比内部应变释放程度大,甚至在量子点顶部有应变过释放情况,这一现象可以定性解释量子点生长的高度受限、量子点后续生长中出现的量子点塌陷和盖层生长停顿后产生的量子点“挖空”现象。  相似文献   

11.
Topography and electrical properties of InAs quantum dots Self assembled InAs‐islands were grown on GaAs with molecular beam epitaxy in the Stranski‐Krastanow growth mode. The topography of surface quantum dots was investigated by atomic force (AFM) and scanning electron microscopy (SEM). While the AFM enables to determine the dot height of ≈ 10 nm the SEM is best suited to study the lateral dimensions of uncapped islands. The latter technique gives a dot diameter of ≈ 30 nm. Although the size distribution of the islands is convoluted in the capacitance measurements on a dot ensemble, it was possible to determine roughly a Coulomb blockade energy of ≈ 20 meV for the ground state and ≈ 10 meV for the first excited dot level. Taking advantage of AFM‐lithography we were able to study electron transport through a single InAs island. Here we got a Coulomb blockade energy of 12 meV when electrons tunnel through the first excited state of the dot.  相似文献   

12.
We have studied the epitaxial growth of self-assembled Ge quantum dots when a submonolayer of carbon is deposited on a Ge wetting layer (WL) prior to the growth of the dots. Using atomic-force microscopy combined with optical techniques like Raman and ellipsometry, we performed a systematic study of the role played by thermally activated Si interdiffusion on dot density, composition and morphology, by changing only the growth temperature T(WL) of the WL. Strikingly, we observe that higher dot densities and a narrower size distribution are achieved by increasing the deposition temperature T(WL), i.e.?by enhancing Si interdiffusion from the substrate. We suggest a two-stage growth procedure for fine tuning of dot topography (density, shape and size) useful for possible optoelectronic applications.  相似文献   

13.
We study how the as-received chemical reagents of a commonly used ligand oleylamine (C18-amine) and precursor PbCl2, each at two different purity statuses, affect the growth of PbS quantum dots in a solventless, relatively green, constant reaction-temperature synthesis system. It is found that the growth behavior of PbS quantum dots reflected from their absorption and photoluminescence spectra is quite sensitive to the purity status of the ligand and precursor under certain circumstances, while the lifetime and quantum yield of quantum dots exhibiting a monomodal or nearly monomodal photoluminescence band are not considerably affected. For instance, the effect of the ligand purity status is particularly evident when a higher PbCl2/S ratio is applied. The use of lower purity C18-amine leads to the growth showing much stronger temperature dependence and also facilitates the earlier entry of Ostwald process highlighted by a bimodal photoluminescence structure. Consistently, a 2 wt% increase in the PbCl2 purity from 98 wt% to 100 wt% (or the absence of 2 wt% of impurities) largely postpones the start of Ostwald process and thus significantly improves both absorption and photoluminescence spectra. These results imply that in order to produce PbS quantum dots with narrow absorption and photoluminescence peaks, one needs to optimize reaction parameters as well as select chemicals of appropriate purities. Moreover, the unintentional involvement of chemicals of different purity status may partially account for the irreproducibility problem often encountered in quantum dot synthesis.  相似文献   

14.
15.
Liu Q  Deng R  Ji X  Pan D 《Nanotechnology》2012,23(25):255706
A new type of Mn-Cu-In-S diluted magnetic semiconductor quantum dots was synthesized and reported for the first time. The quantum dots, with no highly toxic elements, not only show the same classic diluted magnetic behavior as Mn-doped CdSe, but also exhibit tunable luminescent properties in a relatively large window from 542 to 648?nm. An absolute photoluminescence quantum yield up to 20% was obtained after the shell growth of ZnS. This kind of magnetic/luminescent bi-functional Mn-Cu-In-S/ZnS core/shell quantum dot might serve as promising nanoprobes for use in dual-mode optical and magnetic resonance imaging techniques.  相似文献   

16.
The effect of the external charge trap on the photoluminescence blinking dynamics of individual colloidal quantum dots is investigated with a series of colloidal quantum dot–bridge–fullerene dimers with varying bridge lengths, where the fullerene moiety acts as a well‐defined, well‐positioned external charge trap. It is found that charge transfer followed by charge recombination is an important mechanism in determining the blinking behavior of quantum dots when the external trap is properly coupled with the excited state of the quantum dot, leading to a quasi‐continuous distribution of ‘on' states and an early fall‐off from a power‐law distribution for both ‘on' and ‘off' times associated with quantum dot photoluminescence blinking.  相似文献   

17.
We show how simple mechanical agitation of precipitated CdSe quantum dot aggregates causes partially reversible color changes (clearly visible to the eye) in the absorption spectrum of the CdSe (about 4 nm size). The color changes, which are due to changes in size quantization, are not accompanied by change in quantum dot size. This phenomenon is explained by partial deaggregation of the precipitates, leading to reduced charge overlap between neighboring dots. Shaking was shown to result in a looser aggregate structure. It is suggested that CdSO3 particles (an initial product of the CdSe formation reaction) act as weak bridges between CdSe quantum dots, mediating the interparticle interactions and allowing the deaggregation to occur on shaking.  相似文献   

18.
Huang H  Dorn A  Nair GP  Bulović V  Bawendi MG 《Nano letters》2007,7(12):3781-3786
We demonstrate reversible quenching of the photoluminescence from single CdSe/ZnS colloidal quantum dots embedded in thin films of the molecular organic semiconductor N,N'-diphenyl-N,N'-bis(3-methylphenyl)-(1,1'-biphenyl)-4,4'-diamine (TPD) in a layered device structure. Our analysis, based on current and charge carrier density, points toward field ionization as the dominant photoluminescence quenching mechanism. Blinking traces from individual quantum dots reveal that the photoluminescence amplitude decreases continuously as a function of increasing forward bias even at the single quantum dot level. In addition, we show that quantum dot photoluminescence is quenched by aluminum tris(8-hydroxyquinoline) (Alq3) in chloroform solutions as well as in thin solid films of Alq3 whereas TPD has little effect. This highlights the importance of chemical compatibility between semiconductor nanocrystals and surrounding organic semiconductors. Our study helps elucidate elementary interactions between quantum dots and organic semiconductors, knowledge needed for designing efficient quantum dot organic optoelectronic devices.  相似文献   

19.
杨杰  王茺  陶东平  杨宇 《功能材料》2012,43(16):2239-2242,2246
采用离子束溅射技术在Si基底上自组织生长了一系列Ge量子点样品,研究了束流密度对Ge/Si量子点的尺寸分布和形貌演变的影响。原子力显微镜测试结果表明,随着束流密度的增加,量子点的面密度持续增大,其尺寸不断减小,量子点的形貌由圆顶形转变为过渡圆顶形。计算直径标准偏差的结果表明,当束流密度为0.86mA/cm2时,量子点的尺寸均匀性最佳。束流密度与沉积速率成正比,影响着表面吸附原子与其它原子相遇而形成晶核的能力。  相似文献   

20.
We report on the effect of post-growth thermal annealing of [011]- ,[011(-)]-, and [010]-oriented quantum dot chains grown by molecular beam epitaxy on GaAs(100) substrates patterned by UV-nanoimprint lithography. We show that the quantum dot chains experience a blueshift of the photoluminescence energy, spectral narrowing, and a reduction of the intersubband energy separation during annealing. The photoluminescence blueshift is more rapid for the quantum dot chains than for self-assembled quantum dots that were used as a reference. Furthermore, we studied polarization resolved photoluminescence and observed that annealing reduces the intrinsic optical anisotropy of the quantum dot chains and the self-assembled quantum dots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号