首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
A CeO2-modified Ni catalyst has been studied as a substitute for Ni bulk catalyst in a CO removal reaction using various characterization methods. CO removal was enhanced slightly and presented at lower reaction temperatures following promotion of CeO2 on Ni. The enhanced ability to reduce CO was mainly a result of methanation rather than WGS during a CO removal reaction. Based on X-ray diffraction and temperature-programmed reduction, CeO2 appeared to change the Ni surface properties. Because the bond strength between C and O atoms in CO was weakened by the surface oxygen of CeO2 on Ni, the CeO2-promoted Ni catalyst showed higher CO conversion and lower selectivity to WGS than Ni bulk catalyst.  相似文献   

2.
Medium‐temperature shift reaction (MTS, 280–340 °C) has received much attention for use in fuel processors. In this study, bifunctional Pt‐Ni/CeO2 catalysts were prepared by different Pt (0.1–0.5 %) and Ni (5–20 %) loadings, and investigated for MTS reaction. X‐ray diffraction, N2 adsorption and temperature‐programmed reduction tests were used to characterize the prepared samples. The results showed that Pt‐Ni bimetallic catalysts have higher CO conversion in comparison to Pt/CeO2 monometallic catalyst. Furthermore, the sequential synthesis method of Pt and Ni impregnation was preferred to the simultaneous one, which is due to the better Pt dispersion on catalytic surface. Steam to carbon ratio variations study showed the maximum CO conversion to be in the range of 4.5.  相似文献   

3.
Aiming at enhancing H2 production in water gas shift (WGS) for fuel cell application, a small amount of oxygen was added to WGS reaction toward oxygen-enhanced water gas shift (OWGS) on ceria-supported bimetallic Pd–Cu and Pt–Cu catalysts. Both CO conversion and H2 yield were found to increase by the oxygen addition. The remarkable enhancement of H2 production by O2 addition in short contact time was attributed to the enhanced shift reaction, rather than the oxidation of CO on catalyst surface. The strong dependence of H2 production rate on CO concentration in OWGS kinetic study suggested O2 lowers the CO surface coverage. It was proposed that O2 breaks down the domain structure of chemisorbed CO into smaller domains to increase the chance for coreactant (H2O) to participate in the reaction and the heat of exothermic surface reaction helping to enhance WGS kinetics. Pt–Cu and Pd–Cu bimetallic catalysts were found to be superior to monometallic catalysts for both CO conversion and H2 production for OWGS at 300 °C or lower, while the superiority of bimetallic catalysts was not as pronounced in WGS. These catalytic properties were correlated with the structure of the bimetallic catalysts. EXAFS spectra indicated that Cu forms alloys with Pt and with Pd. TPR demonstrated the strong interaction between the two metals causing the reduction temperature of Cu to decrease upon Pd or Pt addition. The transient pulse desorption rate of CO2 from Pd–Cu supported on CeO2 is faster than that of Pd, suggesting the presence of Cu in Pd–Cu facilitate CO2 desorption from Pd catalyst. The oxygen storage capacity (OSC) of CeO2 in the bimetallic catalysts indicates that Cu is much less pyrophoric in the bimetallic catalysts due to lower O2 uptake compared to monometallic Cu. These significant changes in structure and electronic properties of the bimetallic catalysts are the result of highly dispersed Pt or Pd in the Cu nanoparticles.  相似文献   

4.
Cu/CeO2 and CuO/CeO2 catalysts were prepared by solvated metal atom impregnation (SMAI) and conventional impregnation (CI) and used for carbon monoxide oxidation in CO and air. The catalysts were characterized by means of XRD, XPS, AES and H2-TPR techniques. The Cu/CeO2 catalyst prepared via SMAI exhibits higher catalytic activity in CO oxidation than that prepared via CI with the same Cu content due to the smaller Cu particles. The CuO/CeO2 catalyst prepared via SMAI also shows higher catalytic activity than that prepared via CI because the CuO particles of the former are smaller than the latter and can be reduced by CO more easily. The Cu/CeO2 catalysts display higher catalytic activities than CuO/CeO2 catalysts with the same Cu content and prepared by the same method. The TPR profile for CuO/CeO2 catalyst prepared via SMAI has a single peak, indicating a one-step reduction, whereas the TPR profile for CuO/CeO2 catalyst prepared via CI has two peaks, indicating a two-step reduction due to the existence of two kinds of CuO species.  相似文献   

5.
A new series of Ni-Rh bimetallic catalysts with different Ni and Rh loadings on a high-surface-area CeO2 was developed for the reforming of bio-ethanol at low-temperature (below 450 °C) to produce H2-rich gas for on-site or on-board fuel cell applications. Oxidative steam reforming of ethanol (OSRE) over a Ni-Rh/CeO2 catalyst containing 5 wt% Ni and 1 wt% Rh was found to be more efficient offering about 100% ethanol conversion at 375 °C with high H2 and CO2 selectivity and low CO selectivity compared to the steam reforming of ethanol (SRE) reaction which required a higher temperature of about 450 °C to achieve 100% ethanol conversion. The high temperature SRE reaction favors the formation of large amount of CO, which would make the downsteam CO cleanup more complicated for polymer electrolyte membrane fuel cell (PEMFC). The presence of O2 in the feed gas was found to greatly enhance the conversion of ethanol to produce H2 and CO2 as major products. Increase in Ni content above 5 wt% in the catalyst formulation decreased the H2 selectivity while the selectivity of undesirable CH4 and acetaldehyde increased. The 1 wt% Rh/CeO2 catalyst was twice as active as 10 wt% Ni/CO2 catalyst in terms of ethanol conversion and acetaldehyde selectivity and this indicated that Rh was more effective in C–C bond cleavage than Ni. The reaction was found to proceed through the formation of acetaldehyde intermediate, which subsequently underwent decomposition to produce a mixture of CO and CH4 or reforming with H2O and O2 to produce CO, CO2 and H2. The role of Rh is mainly to cleave the C–C and C–H bonds of ethanol to produce H2 and COx while Ni addition helps converting CO into CO2 and H2 by WGS reaction under the conditions employed.  相似文献   

6.
Monometallic and bimetallic catalysts (Pt, Ni, and Pt‐Ni) with single support (Al2O3, TiO2) and composite support (CeO2/Al2O3, CeO2/TiO2) were prepared and tested for water‐gas shift reaction in a tubular quartz reactor. Syngas and steam with different steam‐to‐carbon ratios served as feedstock. The operating pressure was fixed while the reaction temperature was varied. The measured results indicated that the monometallic Ni/Al2O3 catalyst exhibits the lowest CO conversion and H2 yield as compared with other catalysts. About the same CO conversion can be obtained from Pt and Pt‐Ni catalysts with single or composite support. However, higher H2 yield can be achieved from the TiO2‐supported catalyst compared with those supported by Al2O3. The experimental data also indicated that good thermal stability can be reached for the Pt‐based catalysts studied.  相似文献   

7.
Cu/CeO2, Pd/CeO2, and CuPd/CeO2 catalysts were prepared and their reduction followed by in-situ XPS in order to explore promoter and support interactions in a bimetallic CuPd/CeO2 catalyst effective for the oxygen-assisted water-gas-shift (OWGS) reaction. Mutual interactions between Cu, Pd, and CeO2 components all affect the reduction process. Addition of only 1 wt% Pd to 30 wt% Cu/CeO2 greatly enhances the reducibility of both dispersed CuO and ceria support. In-vacuo reduction (inside XPS chamber) up to 400 °C results in a continuous growth of metallic copper and Ce3+ surface species, although higher temperatures results in support reoxidation. Supported copper in turn destabilizes metallic palladium metal with respect to PdO, this mutual perturbation indicating a strong intimate interaction between the Cu–Pd components. Despite its lower intrinsic reactivity towards OWGS, palladium addition at only 1 wt% loading significantly improved CO conversion in OWGS reaction over a monometallic 30 wt% Cu/CeO2 catalysts, possibly by helping to maintain Cu in a reduced state during reaction.  相似文献   

8.
Steam reforming (SR) and oxidative steam reforming (OSR) of ethanol were investigated over undoped and Cu, Co and Ca doped Ni/CeO2–ZrO2 catalyst in the temperature range of 400–650 °C. The nickel loading was kept fixed at 30 wt.% and the loading of Cu and Co was varied from 2 to 10 wt% whereas the Ca loading was varied from 5 to 15 wt.%. The catalysts were characterized by various techniques, such as surface area, temperature programmed reduction, X-Ray diffraction and H2 chemisorption. For Cu and Co doped catalyst, CuO and Co3O4 phases were detected at high loading whereas for Ca doped catalyst, no separate phase of CaO was found. The reducibility and the metal support interactions were different for doped catalysts and varied with the amount and nature of dopants. The hydrogen uptake, nickel dispersion and nickel surface area was reduced with the metal loading and for the Co loaded catalysts the dispersion of Ni and nickel surface area was very low. For Cu and Ca doped catalysts, the activity was increased significantly and the main products were H2, CO, CH4 and CO2. However, the Co doped catalysts showed poor activity and a relatively large amount of C2H4, C2H6, CH3CHO and CH3COCH3 were obtained. For SR, the maximum enhancement in catalytic activity was obtained with in the order of NCu5. For Cu–Ni catalysts, CH3CHO decomposition and reforming reaction was faster than ethanol dehydrogenation reaction. Addition of Cu and Ca enhanced the water gas shift (WGS) and acetaldehyde reforming reactions, as a result the selectivity to CO2 and H2 were increased and the selectivity to CH3CHO was reduced significantly. The maximum hydrogen selectivity was obtained for Catalyst N (93.4%) at 650 °C whereas nearly the same selectivity to hydrogen (89%) was obtained for NCa10 catalyst at 550 °C. In OSR, the catalytic activity was in the order N > NCu5 > NCa15 > NCo5. In the presence of oxygen, oxidation of ethanol was appreciable together with ethanol dehydrogenation. For SR reaction, the highest hydrogen yield was obtained on the undoped catalyst at 600 °C. However, with calcium doping the hydrogen yields are higher than the undoped catalyst in the temperature range of 400–550 °C.  相似文献   

9.
CeO2‐CrOy loaded on γ‐Al2O3 was investigated in this work for the oxidative dehydrogenation (ODH) of propane under oxygen‐free conditions. The ODH experiments of propane were conducted in a fluidized bed at 500°C‐600°C under 0.1 Mpa. The prepared catalyst was characterized by N2 adsorption‐desorption measurements, H2‐temperature‐programmed reduction, O2‐temperature‐programmed desorption, NH3‐temperature‐programmed desorption, x‐ray photoelectron spectroscopy, and x‐ray diffraction. The change in the selectivity of propylene resulted from the thermal cracking of the propane and the competition for lattice oxygen in the catalyst between propylene formation and propane and propylene combustion. Therefore, to achieve higher propylene yield in the industry, the reaction temperature should be 550°C‐575°C for the 17.5Cr‐2Ce/Al catalyst. The results of H2‐TPR (from 0.2218 mmol/g‐0.3208 mmol/g) revealed that the addition of CeO2 can enhance the oxygen capacity of CrOy. Compared with that for 17.5Cr/Al, the conversion can be enhanced from 22.4% to 28.5% and the selectivity of propylene can be improved from 72.2% to 75.9% for the 17.5Cr‐2Ce/Al catalyst. In addition, CeO2 can inhibit the evolution of lattice oxygen (O2?) to electrophilic oxygen species (O2?), causing the average COx (CO and CO2) selectivity to decrease from 9.64% to 6.31%.  相似文献   

10.
The oxidation of methane has been studied by sequential flow reaction experiments over M–8YSZ and M–CeO2/8YSZ (M=Ni, Cu, Co, Ag) catalysts as a function of CH4/O2 from 773 to 1073 K. Over Ni–8YSZ and Ni–CeO2/8YSZ, methane pyrolysis is dominant leading to surface carbon formation at temperatures of 873 K and above. While the addition of ceria to Ni–8YSZ to produce Ni–CeO2/8YSZ does not significantly affect the reaction kinetics, the activity of Cu–CeO2/8YSZ, Co–CeO2/8YSZ, and Ag–CeO2/8YSZ are higher than their M–8YSZ counterparts. The activity of Co–CeO2/8YSZ at high temperatures (973 K and above) is higher than Ni-8YSZ with selectivity towards partial methane oxidation and CO formation. Considering Ni-based catalysts are prone to deactivation due to surface carbon accumulation, Co–CeO2/8YSZ, Cu–CeO2/8YSZ, and Ag–CeO2/8YSZ are possible alternative anode cermets for direct hydrocarbon oxidation solid-oxide fuel cells (SOFC).  相似文献   

11.
Interest regarding the WGS process has grown significantly, because of the recent progression in fuel cells as a clean technology for power generation. Due to the large volume and cost of WGS conventional two‐stage reactors, and also problems related to pyrophoricity and lengthy reduction of customary catalysts, the current challenge is to develop more active and stable catalysts that convert CO in a single‐stage medium temperature shift (MTS, 280–360 °C) reactor, which is applicable in small‐scale fuel cells. Advanced and newly developed catalytic systems for hydrogen purification via MTS reactions are reviewed and discussed in this study. Pt‐based catalysts on reducible oxide supports, e.g., CeO2 and TiO2, have mainly been used for this reaction. It is known that ceria is the most applicable active and stable support and highly promising for MTS reactions, considering its high oxygen storage capacity and mobility of surface oxygen/hydroxyl groups. New studies investigate modified ceria, e.g., CeZr, to improve its catalytic properties.  相似文献   

12.
Bulk Ni2P and CeO2-containing bulk Ni2P (Ce?CNi2P(x), where x represents the Ce/Ni atomic ratio) were prepared by a co-precipitation method followed by an in situ H2 temperature-programmed reduction procedure. The catalysts were characterized by XRD, CO chemisorption, TEM, N2 adsorption?Cdesorption, XPS and X-ray absorption spectroscopy (XAS). Their hydrodenitrogenation performances were studied using quinoline (Q) and decahydroquinoline as the model compounds. Both the hydrogenation and C?CN bond cleavage activities of Ni2P were improved by the introduction of CeO2. CeO2 mainly accelerated the denitrogenation of Q to propylcyclohexane rather than to propylbenzene. XRD and XPS measurements revealed that the Ce species in Ce?CNi2P(x) were mainly in the oxide form and both Ce4+ and Ce3+ species coexisted on the surface of the catalysts. Addition of CeO2 significantly decreased the particle size of Ni2P, resulting in increased specific surface areas and CO uptakes, possibly due to the strong interaction between the Ce species and Ni2P. At a Ce/Ni atomic ratio higher than 0.25, segregation of CeO2 took place. XAS results of the passivated catalysts showed that CeO2 not only affected the oxidability of Ni2P but also led to the formation of metallic Ni. The promoting effect of CeO2 was discussed by considering the electronic interactions between Ce species and Ni2P as well as the presence of the amorphous Ni and low valence Ce3+ species.  相似文献   

13.
J. Qiao  N. Zhang  Z. Wang  Y. Mao  K. Sun  Y. Yuan 《Fuel Cells》2009,9(5):729-739
CeO2‐Ni/YSZ anodes for methane direct oxidation were prepared by the vacuum mix‐impregnation method. By this method, NiO and CeO2 are obtained from nitrate decomposition and high temperature sintering is avoided, which is different from the preparation of conventional Ni‐yttria‐stabilised zirconia(YSZ) anodes. Impregnating CeO2 into the anode can improve the cell performance, especially, when CH4 is used as fuel. The investigation indicated that CeO2‐Ni/YSZ anodes calcined at higher temperature exhibited better stability than those calcined at lower temperature. Under the testing temperature of 1,073 K, the anode calcined at 1,073 K exhibited the best performance. The maximum power density of a cell with a 10 wt.‐%CeO2‐25 wt.‐%Ni anode calcined at 1,073 K reached 480 mW cm–2 after running on CH4 for 5 h. At the same time, high discharge current favoured cell operation on CH4 when using these anodes. No obvious carbon was found on the CeO2‐Ni anode after testing in CH4 as revealed from SEM and corresponding linear EDS analysis. In addition, cell performance decreased at the beginning of discharge testing which was attributed to the anode microstructure change observed with SEM.  相似文献   

14.
Au/CeO2 catalysts prepared by co-precipitation (CP) and deposition-precipitation (DP) methods were tested for low temperature CO oxidation reaction. The structural characters and redox features of the catalysts were investigated by XRD, XPS and H2-TPR. Their catalytic performances for low temperature CO oxidation were studied by means of a microreactor -GC system. It showed that the catalytic activities of Au/CeO2 catalysts greatly depended on the preparation method. The catalysts prepared by DP method exhibited a surprisingly higher activity towards CO oxidation than that prepared by CP method. This may arise from the differences in the particle sizes of Au and redox properties of the catalysts. The low Au loading and the resistance to high temperature of DP-prepared catalyst made it more applicable.  相似文献   

15.
WGS reaction has been investigated on catalysts based on platinum supported over CeO2, TiO2 and Ce-modified TiO2. XPS and XANES analyses performed on calcined catalysts revealed a close contact between Pt precursors and cerium species on CeO2 and Ce-modified TiO2 supports. TPR results corroborate the intimate contact between Pt and cerium entities in the Pt/Ce–TiO2 catalyst that facilitates the reducibility of the support at low temperatures while the Ce–O–Ti surface interactions established in the Ce-modified TiO2 support decreases the reduction of TiO2 at high temperature. The changes in the support reducibility leads to significant differences in the WGS activity of the studied catalysts. Pt supported on Ce-modified TiO2 support exhibits better activity than those corresponding to individual CeO2 and TiO2-supported catalysts. Additionally, the Ce–TiO2-supported catalyst displays better stability at reaction temperatures higher than 573 K that observed on pure TiO2-supported counterpart. Activity measurements, when coupled with the physicochemical characterization of catalysts suggest that the modifications in the surface reducibility of the support play an essential role in the enhancement of activity and stability observed when Pt is supported on the Ce-modified TiO2 substrate.  相似文献   

16.
This paper describes catalytic consequencesThis paper describes catalytic consequences of Pt/CeO2‐Al2O3 catalysts promoted with Ga species for propane dehydrogenation. A series of PtGa/CeO2‐Al2O3 catalysts were prepared by a sequential impregnation method. The as‐prepared catalysts were characterized employing N2 adsorption‐desorption, X‐ray diffrtaction, temperature programmed reduction, O2 volumetric chemisorption, H2‐O2 titration, and transmission electron microscopy. We have shown that Ga3+ cations are incorporated into the cubic fluorite structure of CeO2, enhancing both lattice oxygen storage capacity and surface oxygen mobility. The enhanced reducibility of CeO2 is indicative of higher capability to eliminate the coke deposition and thus is beneficial to the improvement of catalytic stability. Density functional theory calculations confirm that the addition of Ga is prone to improve propylene desorption and greatly suppress deep dehydrogenation and the following coke formation. The catalytic performance shows a strong dependence on the content of Ga addition. The optimal loading content of Ga is 3 wt %, which results in the maximal propylene selectivity together with the best catalytic stability against coke accumulation. © 2016 American Institute of Chemical Engineers AIChE J, 62: 4365–4376, 2016  相似文献   

17.
Hydrogen is a potential alternate energy source for satisfying many of our energy needs. In this work, we studied H2 production from the water-gas-shift (WGS) reaction over Ce1?x Cu x O2 catalysts, prepared with a novel microemulsion method, using two synchrotron-based techniques: time-resolved X-ray diffraction (XRD) and X-ray absorption fine structure (XAFS). The results are compared with those reported for conventional CuO x /CeO2 and AuO x /CeO2 catalysts obtained through impregnation of ceria. For the fresh Ce1?x Cu x O2 catalysts, the results of XAFS measurements at the Cu K-edge indicate that Cu is in an oxidation state higher than in CuO. Nevertheless, under WGS reaction conditions the Ce1?x Cu x O2 catalysts undergo reduction and the active phase contains very small particles of metallic Cu and CeO2?x . Time-resolved XRD and XAFS results also indicate that Cuδ+ and Auδ+ species present in fresh CuO x /CeO2 and AuO x /CeO2 catalysts do not survive above 200 °C under the WGS conditions. In all these systems, the ceria lattice displayed a significant increase after exposure to CO and a decrease in H2O, indicating that CO reduced ceria while H2O oxidized it. Our data suggest that H2O dissociation occurred on the Ovacancy sites or the Cu–Ovacancy and Au–Ovacancy interfaces. The rate of H2 generation by a Ce0.95Cu0.05O2 catalyst was comparable to that of a 5 wt% CuO x /CeO2 catalyst and much bigger than those of pure ceria or CuO.  相似文献   

18.
A comparison study was performed of the water-gas shift (WGS) reaction over Pt and ceria-promoted Pt catalysts supported on CeO2, ZrO2, and TiO2 under rather severe reaction conditions: 6.7 mol% CO, 6.7 mol% CO2, and 33.2 mol% H2O in H2. Several techniques—CO chemisorption, temperature-programmed reduction (TPR), and inductively coupled plasma-atomic emission spectroscopy (ICP-AES)—were employed to characterize the catalysts. The WGS reaction rate increased with increasing amount of chemisorbed CO over Pt/ZrO2, Pt/TiO2, and Pt-CeO x /ZrO2, whereas no such correlation was found over Pt/CeO2, Pt-CeO x /CeO2, and Pt-CeO x /TiO2. For these catalysts in the absence of any impurities such as Na+, the WGS activity increased with increasing surface area of the support, showed a maximum value, and then decreased as the surface area of the support was further increased. An adverse effect of Na+ on the amount of chemisorbed CO and the WGS activity was observed over Pt/CeO2. Pt-CeO x /TiO2 (51) showed the highest WGS activity among the tested supported Pt and Pt-CeOx catalysts. The close contact between Pt and the support or between Pt and CeO x , as monitored by H2-TPR, is closely related to the WGS activity. The catalytic stability at 583K improved with increasing surface area of the support over the CeO2- and ZrO2-supported Pt and Pt-CeO x catalysts.  相似文献   

19.
CeO2 and Cu/CeO2 are effective catalysts/sorbents for the removal or destruction of SO2. Synchrotron‐based high‐resolution photoemission, X‐ray absorption near‐edge spectroscopy (XANES), and temperature‐programmed desorption (TPD) have been employed to study the reaction of SO2 with pure and reduced CeO2 powders, ceria films (CeO2, CeO2−x, Ce2O3+x) and model Cu/CeO2 catalysts. The results of XANES and photoemission provide evidence that SO4 was formed upon the adsorption of SO2 on pure powders or films of CeO2 at 300 K. The sulfate decomposed in the 390–670 K temperature range with mainly SO2 and some SO3 evolving into gas phase. At 670 K, there was still a significant amount of SO4 present on the CeO2 substrates. The introduction of O vacancies in the CeO2 powders or films favored the formation of SO3 instead of SO4. Ceria was able to fully dissociate SO2 to atomic S only if Ce atoms with a low oxidation state were available in the system. When Cu atoms were added to CeO2 new active sites for the destruction of SO2 were created improving the catalytic activity of the system. The surface chemistry of SO2 on the Cu‐promoted CeO2 was much richer than on pure CeO2. The behavior of ceria in several catalytic processes (oxidation of SO2 by O2, reduction of SO2 by CO, automobile exhaust converters) is discussed in light of these results. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
Partial oxidation of methane to syngas over Ni/MgO, Ni/CaO and Ni/CeO2   总被引:1,自引:0,他引:1  
S. Tang  J. Lin  K. L. Tan 《Catalysis Letters》1998,51(3-4):169-175
Partial oxidation of methane to syngas at atmospheric pressure and 750°C was examined over Ni/MgO, Ni/CaO and Ni/CeO2 catalysts with nickel loading of 13 wt%. All catalysts had similar high conversion of methane and high selectivity to syngas, which nearly approached the values predicted by thermodynamic equilibrium. However, only Ni/MgO showed high resistance to carbon deposition under thermodynamically severe conditions (CH4/O2 = 2.5, a higher CH4 to O2 ratio than the stoichiometric ratio). Its catalytic activity remained stable during 100 h of reaction, with no detectable carbon deposition. The oxidation of carbon deposited from pure CH4 decomposition and from pure CO disproportionation was investigated by in situ TPO-MS study which showed that both were effectively inhibited over Ni/MgO. In addition, the catalysts were characterized by TPR, XRD and XPS. It was revealed that the excellent performance of Ni/MgO resulted from the formation of an ideal solid solution between NiO and MgO. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号