首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
国立秋  王锐  徐化明  梁吉 《中国机械工程》2005,16(13):1181-1183
通过理论分析得出,碳纳米管针尖的长度过长会影响其成像的稳定性的结论,然后在原子力显微镜上运用电蚀的方法对碳纳米管针尖的长度进行优化,结果显示,截短后的碳纳米管针尖能够获得稳定的高分辨率成像,从而解决了碳纳米管针尖制造中针尖长度优化这一关键技术问题。  相似文献   

2.
减小探针和样品表面之间的长程宏观力是原子力显微镜获得高分辨率成像的关键。首先通过理论分析得出影响长程力的主要因素是探针的几何形状和尺寸。然后分别运用几何形状和尺寸不同的原子力显微镜的传统Si针尖和碳纳米管针尖对样品进行扫描试验研究,结果显示碳纳米管针尖较传统针尖获得了高分辨率的图像。这一结果表明,碳纳米管针尖减小了成像中宏观长程作用力的影响,是理想的原子力显微镜针尖。  相似文献   

3.
提出利用电子束诱导铂沉积和聚焦离子束铣削技术,实现碳纳米管原子力显微镜探针针尖的制备和结构优化研究。结合高分辨率扫描电子显微镜观测和纳米操纵仪,利用电子束诱导铂沉积实现碳纳米管固定到普通原子力显微镜探针末端,可实现直径小于10nm的纳米管探针制备。提出基于聚焦离子束铣削和照射技术实现对纳米管针尖的长度、角度的精确调控优化,纳米管探针的角度调控精度优于1°。  相似文献   

4.
研制出不锈钢针尖,特制钨尖,以及在尖端上生长有碳纳米管(CNT)阵列的针尖与钨尖4种尖端电极,分别测试了4种尖端电极的负离子产生量,及其在空气中汤生放电的不同的I—V特性曲线。影响气体放电的因素很多,其中电极形状和材料是极为关键的因素。笔者通过大量的研究,对这4种尖端电极进行了分析和讨论,发现特制钨尖比不锈钢针尖的表面电场强,而在这两种尖端上生长了碳纳米管后,负离子产生量分别提高到原来的3倍,表明其表面电场加强且表面逸出功降低。汤生放电研究发现,选择生长有碳纳米管的特制钨尖作为电极,不仅可以降低气体的放电电压,而且还可以增大极间距,有利于气流的通畅和传感器的恢复。  相似文献   

5.
利用环境扫描电子显微镜(ESEM)和原子力显微镜(AFM)表征红瓶猪笼草蜡质滑移区表面微观形貌,并提取粗糙度的相关参数。利用AFM分别在低载荷和高载荷下对蜡质区表面同一区域进行扫描,在不同条件下的扫描形貌一致,且扫描后的探针针尖上未发现附着污染物。利用胶体探针技术在无针尖的探针悬臂上粘附15 μm SiO2小球,模拟单根刚毛与猪笼草蜡质区表面的接触,并测试蜡质区表面的粘附力和摩擦力,并与不同粗糙度的抛光纸表面做对照。考虑到表面物理化学性质对其粘附特性的重要影响,利用接触角测量仪测量蜡质区表面和同粗糙度范围抛光纸表面对水和二碘甲烷的表观接触角并利用二滴法计算其表面能。研究结果表明:蜡质滑移区表面单个蜡质晶体具有力学稳定性,不会因脱落而污染昆虫的粘附器官,污染学说不成立;表面微粗糙度能有效地减小界面间的接触面积,降低了蜡质滑移区表面的粘附力和摩擦力;蜡质滑移区超疏水特性和低表面能是降低表面粘附力和摩擦力的另一个重要因素,两者共同作用形成了猪笼草蜡质滑移区的反粘附特性。  相似文献   

6.
基于原子力显微镜的线宽粗糙度测量   总被引:1,自引:0,他引:1  
给出采用原子力显微镜(Atomic force microscope,AFM)测量线宽粗糙度(Line width roughness,LWR)的分析步骤。分析线宽和LWR及其偏差随刻线横截面位置的高度变化的关系,线宽及其偏差和LWR及其偏差随刻线横截面位置的高度值增加而减小。分别采用四种边缘提取算子提取了碳纳米管针尖AFM测量的刻线顶部线宽边缘,计算了刻线顶部线宽和LWR,顶部线宽和LWR测量结果对边缘提取算子不敏感。结合被测单晶硅台阶的顶表面和底表面加工方法,提出采用各扫描线轮廓高度相等的方法校正AFM压电驱动器的z向非线性。比较了采用普通氮化硅探针针尖、超尖针尖以及碳纳米管针尖AFM测量名义线宽为1 000 nm刻线LWR的结果,显示采用三种针尖的LWR测量结果存在差异,但考虑到AFM分辨率,可认为测量结果基本相同。因此,为更精确描述刻线边缘,必须提高AFM分辨率。  相似文献   

7.
传统光学显微镜与近场光学显微镜   总被引:3,自引:0,他引:3  
祝生祥 《光学仪器》2000,22(6):34-41
近场光学显微镜是对于常规光学显微镜的革命。它不用光学透镜成像 ,而用探针的针尖在样品表面上方扫描获得样品表面的信息。分析了传统光学显微镜与近场光学显微镜成像原理的物理本质和两种显微镜系统结构的异同点。介绍了光纤探针的制作方法。重点讨论了近场探测原理、光学隧道效应及非辐射场的性质  相似文献   

8.
基于纳米试验系统研究了碳纳米管工具电极的在线制备和导电性能测试方法。首先利用电弧放电将碳纳米管焊接在钨针尖上,制备碳纳米管工具电极;然后在线测试碳纳米管工具电极的伏安特性,分析碳纳米管与钨针焊接前后电阻的变化。通过局部焦耳热法改善碳纳米管与钨针的接触特性,用Au离子溅射法降低碳纳米管工具电极的电阻,提高电极的整体导电性能。试验结果表明,碳纳米管与钨针焊接后,电路中的电极电阻明显降低,碳纳米管工具电极的电阻约为130kΩ,经过90s局部焦耳热处理后,电极电阻降低到55kΩ左右,比原电阻减小约60%,接触性能明显改善;再经过Au离子溅射处理后,电极电阻进一步降低到40kΩ左右,比原电阻减小约70%,从而显著提高了碳纳米管工具电极的导电性能。  相似文献   

9.
目的:探讨原子力显微镜(AFM)在研究人脐静脉内皮细胞(ECV304)表面形貌、超微结构及纳米机械性质等方面的应用,讨论ECV304超微结构和机械性质与其功能的关系。方法:利用AFM对ECV304细胞的表面形貌及生物机械性质进行表征与测量。结果:在AFM下观察到用普通光学显微镜难以观察到的ECV304细胞的独特的形态结构,如细胞骨架、伪足及细胞边缘微丝等。ECV304细胞呈现长梭形、多角形、圆形等多种形态,细胞表面平均粗糙度为320.52±75.98 nm,表面均匀分布微绒毛,细胞周围有铺展的圆盘状物质。力曲线定量分析得出针尖与细胞表面的非特异性粘附力为75±14 pN。结论:通过AFM成像和力曲线测量表明,ECV304细胞呈圆形,多角形,梭形等多种形态,针尖与细胞膜表面问的粘附力比较小,约75±14pN。  相似文献   

10.
碳纳米管的拾取对大规模制造和修复电子纳米器件具有重要意义。本文在扫描电子显微镜内搭建微纳操作系统,提出在高低放大倍率下协同操作钨针和原子力显微镜探针与碳纳米管搭建切割拾取电路,采用通电切割方法实现碳纳米管的快速拾取。保持钨针与碳纳米管接触状态不变,建立碳纳米管与原子力显微镜探针点接触和线接触电路模型,分析接触位姿对电学性能的影响,并在线接触电路模型情况下改变碳纳米管与原子力显微镜探针的接触长度,研究接触长度对接触电阻的影响。实验结果表明,本文提出的操作策略能有效地提高碳纳米管的拾取成功率并将操作时间控制在8 min左右;在0~1 V的低电压且碳纳米管与金表面线接触的状态下,碳纳米管与钨针和金表面为欧姆接触,且产生的接触电阻与金属的接触长度成反比,而在点接触状态下则为非欧姆接触,表明接触状态对碳纳米管与金属间的电学性能有影响。本文的碳纳米管拾取策略和电学性能测量结果,对碳纳米管的拾取、性能测量和装配工作具有一定的指导意义。  相似文献   

11.
Multi-walled carbon nanotube (CNT) tips were used in atomic force microscope (AFM) anodization lithography to investigate their advantages over conventional tips. The CNT tip required a larger threshold voltage than the mother silicon tip due to the Schottky barrier at the CNT-Si interface. Current-to-voltage curves distinguished the junction property between CNTs and mother tips. The CNT-platinum tip, which is more conductive than the CNT-silicon tip, showed promising results for AFM anodization lithography. Finally, the nanostructures with high aspect ratio were fabricated using a pulsed bias voltage technique as well as the CNT tip.  相似文献   

12.
The carbon nano-tube (CNT) has ideal properties for atomic force microscope (AFM) tips. We assembled a CNT using 2 three-axial manipulators in a scanning electron microscope (SEM) chamber. In this process, the length and angle of the CNT were adjusted by observing the SEM image, after which the CNT was glued by amorphouscarbon. The results of performance are as follows. The lifetime of the CNT tip proved to be 5 times better than that of the silicon tip when continuously measuring the micro-roughness of a Czochralski (Cz) P-type (100) silicon wafer. The CNT tip is able to trace a narrow space (width less than 1 microm) better than the conventional silicon tip because of its high aspect ratio. The relationship between the observed image and CNT geometry is discussed herein.  相似文献   

13.
Gibson CT  Carnally S  Roberts CJ 《Ultramicroscopy》2007,107(10-11):1118-1122
In atomic force microscopy (AFM) the accuracy of data is often limited by the tip geometry and the effect on this geometry of wear. One way to improve the tip geometry is to attach carbon nanotubes (CNT) to AFM tips. CNTs are ideal because they have a small diameter (typically between 1 and 20nm), high aspect ratio, high strength, good conductivity, and almost no wear. A number of methods for CNT attachment have been proposed and explored including chemical vapour deposition (CVD), dielectrophoresis, arc discharge and mechanical attachment. In this work we will use CVD to deposit nanotubes onto a silicon surface and then investigate improved methods to pick-up and attach CNTs to tapping mode probes. Conventional pick-up methods involve using standard tapping mode or non-contact mode so as to attach only those CNTs that are aligned vertically on the surface. We have developed improved methods to attach CNTs using contact mode and reduced set-point tapping mode imaging. Using these techniques the AFM tip is in contact with a greater number of CNTs and the rate and stability of CNT pick-up is improved. The presence of CNTs on the modified AFM tips was confirmed by high-resolution AFM imaging, analysis of the tips dynamic force curves and scanning electron microscopy (SEM).  相似文献   

14.
Feng SC  Vorburger TV  Joung CB  Dixson RG  Fu J  Ma L 《Scanning》2008,30(1):47-55
It is difficult to predict the measurement bias arising from the compliance of the atomic force microscope (AFM) probe. The issue becomes particularly important in this situation where nanometer uncertainties are sought for measurements with dimensional probes composed of flexible carbon nanotubes mounted on AFM cantilevers. We have developed a finite element model for simulating the mechanical behavior of AFM cantilevers with carbon nanotubes attached. Spring constants of both the nanotube and cantilever in two directions are calculated using the finite element method with known Young's moduli of both silicon and multiwall nanotube as input data. Compliance of the nanotube-attached AFM probe tip may be calculated from the set of spring constants. This paper presents static models that together provide a basis to estimate uncertainties in linewidth measurement using nanotubes. In particular, the interaction between a multiwall nanotube tip and a silicon sample is modeled using the Lennard-Jones theory. Snap-in and snap-out of the probe tip in a scanning mode are calculated by integrating the compliance of the probe and the sample-tip interacting force model. Cantilever and probe tip deflections and points of contact are derived for both horizontal scanning of a plateau and vertically scanning of a wall. The finite element method and the Lennard-Jones model provide a means to analyze the interaction of the probe and sample and measurement uncertainty, including actual deflection and the gap between the probe tip and the measured sample surface.  相似文献   

15.
Ball-shaped atomic force microscope (AFM) tips (ball tips) are useful in AFM metrology, particularly in critical dimension AFM metrology and in micro-tribology. However, a systematic fabrication method for nano-scale ball tips has not been reported. We report that nano-scale ball tips can be fabricated by ion-beam-induced deposition (IBID) of Pt at the free end of multiwall carbon nanotubes that are attached to AFM tips. Scanning electron microscopy and transmission electron microscopy analyses were done on the Pt ball tips produced by IBID in this manner, using ranges of Ga ion beam conditions. The Pt ball tips produced consisted of aggregated Pt nano-particles and were found to be strong enough for AFM imaging.  相似文献   

16.
Stiffness-load curves obtained in quantitative atomic force acoustic microscopy (AFAM) measurements depend on both the elastic properties of the sample and the geometry of the atomic force microscope (AFM) tip. The geometry of silicon AFM tips changes when used in contact mode, affecting measurement accuracy. To study the influence of tip geometry, we subjected ten AFM tips to the same series of AFAM measurements. Changes in tip shape were observed in the scanning electron microscope (SEM) between individual AFAM tests. Because all of the AFAM measurements were performed on the same sample, variations in AFAM stiffness-load curves were attributed to differences in tip geometry. Contact-mechanics models that assumed simple tip geometries were used to analyze the AFAM data, but the calculated values for tip dimensions did not agree with those provided by SEM images. Therefore, we used a power-law approach that allows for a nonspherical tip geometry. We found that after several AFAM measurements, the geometry of the tips at the very end is intermediate between those of a flat punch and a hemisphere. These results indicate that the nanoscale tip-sample contact cannot easily be described in terms of simple, ideal geometries.  相似文献   

17.
Macrotribological studies of microcrystalline graphite powder reveal a drastic decrease in the friction coefficient when the experiments are carried out in the presence of low-viscosity liquids. The friction reduction is attributed to the simultaneous presence of particles and liquid in the sliding contact, but the mechanisms involved remain unclear. In order to contribute to the understanding of liquid action in friction reduction mechanisms, nanoscale investigations of the tribofilms have been performed using lateral force microscopy. Attention is devoted to the nanostructure of the film surfaces and their nanofriction behavior using an atomic force microscope. The influence of the tip/sample interfaces on friction properties is investigated by using AFM tips constituted of different compounds (silicon, gold/chromium alloy, silicon nitride or carbon-covered AFM tip) and by performing the nanofriction tests in air or liquid environments. The results indicate that the friction reduction observed at macroscale is attributed neither to the lowering of the shear strength of the carbon/carbon interface in the presence of liquid nor to the nanostructure of the film surface. Collective liquid/particles effects inside the contact during sliding are probably involved.  相似文献   

18.
Chung KH  Lee YH  Kim DE 《Ultramicroscopy》2005,102(2):161-171
The wear of an atomic force microscope (AFM) tip is one of the crucial issues in AFM as well as in other probe-based applications. In this work, wear tests under extremely low normal load using an AFM were conducted. Also, in order to understand the nature of silicon tip wear, the wear characteristics of crystal silicon and amorphous silicon oxide layer were investigated by a high-resolution transmission electron microscope (HRTEM). It was found that fracture of the tip readily occurred due to impact during the approach process. Experimental results showed that the impact should be below 0.1 nNs to avoid significant fracture of the tip. Also, it was observed that wear of the amorphous layer, formed at the end of the tip, occurred at the initial stage of the silicon tip damage process. Based on Archard's wear law, the wear coefficient of the amorphous layer was in the range of 0.009-0.014. As for the wear characteristics of the silicon tip, it was shown that wear occurred gradually under light normal load and the wear rate decreased with increase in the sliding distance. As for the wear mechanism of the silicon tip, oxidation wear was identified to be the most significant. It was shown that the degree of oxidation was higher under high normal load and in a nitrogen environment, oxidation of the silicon tip was reduced.  相似文献   

19.
分析了现有的AFM力传感器的工艺特点及问题。在此基础上研究用KOH溶液两步法P+自停止腐蚀制作厚度精确可控的单晶硅悬臂梁;以SiO2为掩模,SF6刻蚀硅,用RIE与各向同性湿法化学腐蚀相结合使悬臂梁探针一次成形和用湿法腐蚀锐化探针,针尖半径约50nm.制定了适于批量生产的AFM力传感器加工工艺。  相似文献   

20.
One of the factors that limit the spatial resolution in atomic force microscopy (AFM) is the physical size of the probe. This limitation is particularly severe when the imaged structures are comparable in size to the tip's apex. The resolution in the AFM is usually enhanced by using sharp tips with high aspect ratios. In the present paper we propose an approach to modify AFM tips that consists of depositing nanoclusters on standard silicon tips. We show that the use of those tips leads to atomic force microscopy images of higher aspect ratios and spatial resolution. The present approach has two major properties. It provides higher aspect-ratio images of nanoscale objects and, at the same time, enables to functionalize the AFM tips by depositing nanoparticles with well-controlled chemical composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号